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The vehicle routing problem with time windows (VRPTW) is a generalization of the vehicle routing problem where the
service of a customer can begin within the time window defined by the earliest and the latest times when the customer
will permit the start of service. In this paper, we present the development of a new optimization algorithm for its solution.
The LP relaxation of the set partitioning formulation of the VRPTW is solved by column generation. Feasible columns
are added as needed by solving a shortest path problem with time windows and capacity constraints using dynamic
programming. The LP solution obtained generally provides an excellent lower bound that is used in a branch-and-bound
algorithm to solve the integer set partitioning formulation. Our results indicate that this algorithm proved to be successful
on a variety of practical sized benchmark VRPTW test problems. The algorithm was capable of optimally solving 100-
customer problems. This problem size is six times larger than any reported to date by other published research.

he routing and scheduling of vehicles represents

an important component of many distribution
and transportation systems costs. The vehicle routing
problem (VRP) involves the design of a set of mini-
mum cost routes, originating and terminating at a
central depot, for a fleet of vehicles which services a
set of customers with known demands. Each customer
is serviced exactly once and, furthermore, all the cus-
tomers must be assigned to vehicles such that the
vehicle capacities are not exceeded. The generic VRP
and many of its practical occurrences have been
studied intensively in the literature (Bodin et al. 1983,
Magnanti 1981, and Laporte and Nobert 1987).

The vehicle routing problem with time windows
(VRPTW) is a generalization of the VRP involving
the added complexity of allowable delivery times, or
time windows. In these problems, the service of a
customer, involving pick-up (delivery) of goods or
services, can begin within the time window defined by
the earliest and the latest times when the customer
will permit the start of service. Note that the times at
which services begin are decision variables. This paper
treats the hard window case, where if a vehicle arrives

at a customer too early, it will wait. In addition, due
dates cannot be violated. Time windows arise natu-
rally in problems faced by business organizations that
work on fixed time schedules. Specific examples of
problems with hard time windows include bank deliv-
eries, postal deliveries, industrial refuse collection and
school bus routing and scheduling.

In this paper, we assume a homogeneous fleet.
Furthermore, the number of vehicles used is free, i.e.,
the fleet size is determined simultaneously with the
best set of routes and schedules rather than being fixed
a priori. Note that even finding a feasible solution to
the VRPTW when the number of vehicles is fixed is
itself an NP-complete problem (Savelsbergh 1985).

While heuristics have been found to be very effective
and efficient in solving a wide range of practical size
VRPTW (see Desrochers et al. 1988, and Solomon,
Baker and Schaffer 1988), optimal approaches have
lagged considerably behind. In the literature, the
largest problem solved to optimality involved four
vehicles servicing 14 customers with tight time win-
dows (Kolen, Rinnooy Kan and Trienekens 1987).

The contribution of this paper is the development
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of a new optimization algorithm for the VRPTW that
is capable of optimally solving problems of a size far
larger than any attempted to date in the literature.
The paper is organized as follows. Section | reviews
the literature. In Section 2, a set partitioning formu-
lation for the VRPTW and the column generation
approach are presented. Section 3 discusses the design
of the subproblem. Section 4 introduces a set covering
model. It also discusses the solution to the linear set
covering model and the dynamic programming algo-
rithms for the subproblem. The branch-and-bound
approach for obtaining integer solutions is described
in Section 5. In Section 6 we present the computation
experiments. Finally, the last section states our
conclusions.

1. LITERATURE REVIEW

We have witnessed significant advances made for
different variants of the VRPTW. This fast growing
body of research has been surveyed in Solomon and
Desrosiers (1988) and Desrochers et al. (1988).

Optimal approaches, using dynamic programming,
have been proposed for different variants of the single
VRPTW to minimize the total distance traveled.
For the traveling salesman problem, Christofides,
Mingozzi and Toth (1981b) use state-space relaxations
to reduce the number of states and obtain a lower
bound. Problems with up to fifty moderately tight-
time window constrained customers are considered.
Psaraftis (1983) presents an O(»n?3") time algorithm
(where 7 is the number of customers) to minimize a
more general objective function, the total customer
inconvenience, for the pick-up and delivery problem.
The tractable problem size was limited to 8-10 cus-
tomers. Desrosiers, Dumas and Soumis (1986) present
an optimal dynamic programming algorithm that is
capable of solving dial-a-ride problems involving up
to forty customers (80 nodes) in less than six seconds
on a CYBER 173.

Dynamic programming algorithms have also been
used with great success to obtain integer optimal solu-
tions to the shortest path problem with time window
constraints (SPPTW). Desrosiers, Pelletier and Soumis
(1983) developed a generalization of the Ford-
Bellman-Moore dynamic programming algorithm
approach to the classical shortest path problem.
Desrochers and Soumis’s (1988a) enhancement of
this algorithm solved problems having up to 2,500
nodes and 250,000 arcs in less than one minute on
a CYBER 173. Desrochers and Soumis (1988b) also
present a primal-dual re-optimization algorithm
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which is particularly suitable when generating multi-
ple disjoint routes in column generation schemes for
VRPTW variants. Finally, Desrochers (1988) gener-
alizes the above primal-dual approach to the shortest
path problem with multiple resource constraints while
Dumas, Desrosiers and Soumis (1989a) describe
a shortest path algorithm for vehicle routing with
paired pick-up and delivery stops and time-window
constraints.

Column generation approaches for set partitioning
formulations of several VRPTW variants have also
been presented. In the case of the multitraveling sales-
man problem, such an approach to minimize a linear
combination of the fleet size and total distance
traveled is presented in Desrosiers, Soumis and
Desrochers (1984). The columns are generated by
solving an SPPTW. An updated version of this algo-
rithm has recently solved to optimality problems with
over 300 trips. A Lagrangian relaxation method pro-
posed in Desrosiers, Soumis and Sauvé (1988) was
successful to optimize the fleet size. The column gen-
eration scheme for the multitraveling salesman has
been generalized to handle problems with several
depots and different vehicle types in the context of
dial-a-ride problems in Dumas, Desrosiers and Soumis
(1989). A similar column generation approach has
also been designed for the pick-up and delivery prob-
lem in the context of goods transportation with tight
vehicle capacity constraints (Dumas, Desrosiers and
Soumis 1991).

The only work that we are aware of on exact
methods for the VRPTW is that of Kolen, Rinnooy
Kan and Trienekens (1987), Knudsen (1989) and
Madsen (1990). Kolen, Rinnooy Kan and Trienekens
extend the shortest g-path relaxation algorithm for the
vehicle routing problem (Christofides, Mingozzi and
Toth 1981b) to the VRPTW. With no branching
required to obtain the solution of a four vehicle, 14-
customer problem, the algorithm took 0.58 minute of
DEC 20/60 CPU time. Knudsen uses Lagrangian
relaxation and set partitioning/column generation to
solve a 30-customer problem to optimality. Madsen
proposes a Lagrangian relaxation for the computation
of a lower bound for the VRPTW. Using variable
splitting, this relaxation necessitates the integer solu-
tion of two types of subproblems: the SPPTW and the
generalized assignment problem. The author has
reported the optimal solution for a 31-customer
problem.

The results presented in this paper have been used
in Haouari, Dejax and Desrochers (1990) to model
and solve two other vehicle routing problems: the fleet
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size and mix vehicle routing problem with time win-
dows and the multidepot vehicle routing problem with
time windows.

2. THE SET PARTITIONING MODEL

Let G = (I, A) be a network, where A4 is the set of
route segments and N is the set of nodes or customers.
Associated with each arc (i, j) € 4 is a cost ¢; and a
duration #;. We assume that the service time at cus-
tomer { is included in the duration of each arc (i, j).
In this paper, the cost is taken to be the distance
between i and j. The vehicle routing problem with
time windows involves the design of a set of minimum
cost routes originating and terminating at a central
depot, d, for a fleet of vehicles which services a set of
customers with known demands ¢;. Each customer is
serviced exactly once. The service of a customer,
involving pick-up (delivery) of goods or services can
begin at 7; within the time window defined by the
earliest time, a;, and the latest time, b;, when the
customer will permit the start of service. If a vehicle
arrives at a customer too early, it will wait. In addition,
due dates cannot be violated. Furthermore, all the
customers must be assigned to vehicles such that the
vehicle capacities, O, are not exceeded.

The VRPTW on network G can be formulated as a
set partitioning problem. For this, let R be the set of
feasible routes for the VRPTW. Also let §, be a
constant that takes the value 1 if route r € R visits
customer i € N \{d} and 0 otherwise. Define ¢, to be
the cost of route r. The cost of a route is defined as
the sum of the cost of the arcs of the route. Finally,
let x, be a binary variable equaling 1 if route 7 is used
and 0 otherwise. The set partitioning problem selects
a minimal cost set of routes satisfying the VRPTW
constraints:

min Y ¢x,
réRrR

Y 6ux, =1, i€ N\{d)

rer
x,€1{0,1}, reR.

The columns represented by the variables correspond
to the feasible routes. As their number is extremely
large for all but very small sized problems, the set
partitioning problem cannot be solved directly, i.e.,
by approaches involving exhaustive column enumer-
ation; instead, we use a column generation method.

The LP relaxation of the set partitioning problem is
solved by column generation. Feasible columns are
added as needed by solving a subproblem using
dynamic programming. The solution obtained gener-
ally provides an excellent lower bound that is
embedded in a branch-and-bound algorithm to solve
the integer set partitioning problem.

3. DESIGNING THE SUBPROBLEM

A good subproblem must be able to efficiently price
out all feasible routes. Such an ideal subproblem may
not exist, hence, we may have to settle for a less
efficient subproblem or a lesser quality lower bound.
We will first describe a feasible route and a first
dynamic programming model that is able to price out
all feasible routes. The solution space of this model
only contains feasible routes and the model is very
time consuming to solve. We will also present two
other dynamic programming models whose solution
spaces contain more than the feasible route set but
have a pseudopolynomial worst case complexity.

A path in the network G is defined as a sequence of
nodes (io, iy,. . .,ix, ix+1), such that each arc (i, ixy;)
belongs to A. A path satisfying all the constraints to
be described next is called a route. All routes start and
end at the depot (i, = ix+; = d). Let ¢; be the marginal
cost associated with arc (i, j) € 4. The value of this
marginal cost will be defined later. The marginal cost
of a route is defined as the sum of the marginal cost
of the arcs of the route. As established earlier, there
are capacity and time window constraints on the
routes. The sum of the node demands must be less
than the vehicle capacity Q. Each node i € N has time
window [a;, b;] and a duration ¢; is associated with
each arc (i, j) € A. Recall that T; is defined as the time
at which service at node i can begin. If we set T, to 0,
we can then compute 7; for any route using the two
relations T, + ¢, < T;,, and a, < T, < b, for
Osks<K

The three models considered will be illustrated on
the following four-node problem. The vehicle capac-
ity, Q, is equal to six. The demand and time window
of each node and the duration of each arc are specified
in Figure 1. The costs are unspecified because we are
mostly interested in enumerating the feasible solutions
in each model.

We define F;(S, ¢) as the minimum marginal cost
of the partial route going from the depot to node i,
visiting only once all nodes in set S and ready te leave
node i at time ¢ or later. F;(.S, t) can be computed by



q3=2
la;,b;]=[4,7]

t23=1

q,=2
[32,b2]=[2,4]

Figure 1. Demand and time window of nodes and arc
duration.

solving the recurrence equations:

Fy(4, 0) = 0;

F(S, t) = min {F;(S — {j}, t') + ¢|t" +t; < ¢,
(i)ed

a;st' <sband ¥ g < 0},

keS
forall j, S, tsuch that jE N, SC N, aq;<st<b,.

A special case of this problem is the shortest weight-
constrained path known to be NP-complete (Garey
and Johnson 1979). Thus, our dynamic programming
problem is NP-hard. Furthermore, no pseudo-
polynomial algorithm is known for this problem.

This first model has the set of all feasible routes
as a solution space. In our example, there are
only eleven feasible routes: (d, 1, d), (d, 2, d), (d, 3, d),
d 1,2, d),d1,3,d),d21,4d),d 2 3,4d),
d 3, 1,4d),d 1,2 3,d), (d 2,1, 3, d), and
d 2,3,1,d).

Christofides, Mingozzi and Toth (1981a) have pro-
posed a state-space relaxation for dynamic programs
in order to obtain easy to compute lower bounds on
the value of their objective function. We can apply
this technique by defining a mapping of the original
state-space (.S, 7) onto the new state-space (g, ¢) and
by defining correct new transitions. Each state (S, )
is mapped on state (Jres qi, ) and Gi(q, t) is the
minimum marginal cost of the partial path going from
the depot to node i, having accumulated a load ¢g and
ready to leave this node at time ¢ or later. The new
recurrence equations are:

G40, 0) = 0;
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G0, 0) = 0;
Gi(g, 1) = min[G{(q’, t') + Gs|t" + 1 < 1,
(ij)ea
a st <sbandq + ¢ < ql,
for all j, g, ¢t such that j € N, ¢ < ¢ < Q and

astsb.

This new dynamic programming problem has the
multiple knapsack problem as a special case and thus
is also NP-hard. However, there are pseudopolynom-
ial algorithms to solve it. One of them is described in
Section 4.2.

This second model has a larger solution space than
the first model. In our example, there are twenty-two
solutions for this model, the previous eleven feasible
routes and the following eleven paths: (d, 1, 2, 1, d),
d,1,3,1,d),(d 2,1,2,d),(d,3,1,3,d),(d 1,21,
2,d),(d, 1,2,1,3,d),(d, 1,2,3,1,d),(d 1,3, 1, 3,
d),(d,2,1,2,d),(d, 2,1,3,1,d),and (d, 3, 1, 3, 1,
d). Note that most of these nonelementary paths
contain a cycle of the form (i, j, i). These cycles are
known as 2-cycles. We will now consider a third model
in which the 2-cycles are eliminated.

A 2-cycle elimination procedure was first proposed
by Houck et al. (1980) for a path relaxation of the
traveling salesman problem. The basic idea is to keep
two partial paths from the depot to each node i. These
are the best and the next best partial paths, respec-
tively. The state space remains the same as in the
second model, and H,(qg, ¢) is the minimum marginal
cost of the partial path going from the depot to node
i, having accumulated a load ¢ and ready to leave this
node at time ¢ or later. Define p;(q, t) as the predeces-
sor of node i in the path associated with marginal cost
Hi(q, t). Let H!(q, t) be the marginal cost of the best
partial path going from the depot to node i, having
accumulated a load g, ready to leave this node at time
¢t or later and not having p;(q, ¢) as the last node
visited. Obviously, H;(q, t) < H/(q, t). The recurrence
equations for the subproblem with 2-cycle elimination
are:

H,(0,0) = 0;
Hj(qg, 1)
= min {[H(q’,t") +&;1j#pq’, 1),
(iy)eA

t+ystast' sbandqg +q<q),
(Hi(q',t")+lj=pdq’,t'),
U+ystast’ <sbandg’ + < ql,

for all j, g, ¢t such that j € N, ¢, < ¢ < Q and

astsb,.
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Hj,(qa l)
= min {[Hi(qla t,) + C-'ljl.] # pi(q’, t,)5
(ij)EA
i#p(q 1)t +tyst,a st sb
and ¢’ + g; < q],
[Hi(q',t") + ¢lj=pia’, t'),
i#p(g ), '+l st,aist <b
and ¢’ + ¢; < ql},

for all j, g, t such that j € N, ¢ < g < Q
andaj$t$bj.

This third dynamic programming problem also has
the multiple knapsack problem as a special case and
thus is NP-hard. In this case also, there are pseudo-
polynomial algorithms to solve it. One of them is
described in Section 4.2. This third model also has a
larger solution space than the first model. However, it
is smaller than the solution space of the second model.
In our example, there are twelve solutions for
this model, the eleven feasible routes and the path:
d, 1,2,3,1,d).

For the path relaxation of the TSP, Houck et al.
have shown that for an »n node problem, the ratio
of the number of feasible paths with 2-cycles to
the number of feasible paths without 2-cycles is
(I + 1/(n — 3))"3. This ratio is worth approximately
e = 2.718 for n large enough. Of course, this result
cannot be extended to our case, but it is indicative of
the reduction in the number of feasible paths in a
model when the 2-cycles are eliminated.

An interesting parallel can be made between the
bounding procedures utilized in our method versus
those of Kolen, Rinnooy Kan and Trienekens (1987).
The third dynamic programming model described
above is similar to the first level of Kolen, Rinnooy
Kan and Trienekens’ two-level bounding mechanism.
However, the second level of our model is the linear
relaxation of a set partitioning problem, while theirs
is a second state-space relaxation. This state-space
relaxation is essentially a row agregation, where each
column of the set partitioning model is reduced to the
respective route demand. Hence, this agregation is
equivalent to a knapsack constraint.

4. A SET COVERING TYPE MODEL

The VRPTW has been formulated as a set partitioning
problem in Section 2. However, for implementation
reasons, we are not going to use this model directly.

Instead, for column generation we are going to use a
set covering type model because the subproblem can
generate routes containing cycles. Furthermore, the
linear relaxation of the set covering type model is
numerically far more stable than that of the set parti-
tioning model. The solution derived from this set
covering type model is made feasible for the set par-
titioning model by using the branch-and-bound
scheme described in Section 5.

To introduce the set covering type model, let v, be
a constant taking an integer value if route » € R visits
customer i € N \{d} and 0 otherwise. The constant vy;,
indicates that a customer i can be visited more than
once by route 7. Let ¢, be the cost of route r and take
X, as a binary variable equaling 1 if route  is used and
0 otherwise. Finally, let X, and X, be two additional
integer variables. The variable X, is defined as the
number of routes, while the variable X, represents the
total distance traveled. Note that X. is integer only if
¢, is integer for all r, » € R. We satisfy this condition
by taking ¢, to be integer for (i, j) € A. We can now
present our set covering type model formally. The
mathematical formulation is:

min Y c¢.x, (1)
reR
> vix, = 1, i € N\{d}, (2)
reR
Y x,—X,=0, (3)
r€R
> ox,—X.=0, (4)
reER
x,€1{0, 1}, r€ER, (5)
Xy, X. = 0, integer. 6)

The objective function and constraints (2) and (5)
form a set covering problem which selects a minimal
cost (distance) set of routes such that for each
customer | there is at least one route visiting
that customer. Constraints (3) and (4) ensure that the
number of routes and the total distance traveled,
respectively, are integers.

Optimizing the LP using the current columns con-
stitutes the first phase of the column generation pro-
cedure. In the second phase, a subproblem is solved
to find the minimal marginal cost column. If a column
with negative marginal cost is found, this variable is
added to the known ones and we return to the first
phase. Otherwise, the current solution is optimal.
Section 4.1 describes the first phase of the procedure,
while Section 4.2 describes the second phase.



4.1. The Linear Set Covering Solution

The simplex method is used to solve the linear relax-
ation of the set covering type problem. The XMP code
of Marsten (1981) is used for this purpose. Initially,
the problem contains | N| — 1 columns (an identity
matrix), i.e., one vehicle for each customer.

The simplex method gives the dual variables =,
i € N\{d}, =, and . associated with constraints (2),
(3) and (4), respectively, necessary for the solution to
the subproblem. It also enables easy reoptimization
each time new columns are generated from the sub-
problem. Therefore, from linear programming theory,
we obtain the marginal cost ¢, of a route r that is given
by:

G =C — 2 TiYir — g — WcCy.

IEN\{d}
Since the cost of a route is defined as ¥x_; ¢;, .., for a
route (io, i1, . . ., ix, ix+1), C, becOmes
K

K K
&= 3 Ciryiver — > Ty — Tg — T > Cirsigsrs
k=0 k=1 k=0

K
C_‘r = Z [(1 - WC)cika-H - 7(',',(] as io = d
k=0

Therefore, we can define the marginal cost ¢; of an
arc (i, j) as

C-',:/' = (1 - 71'0)(,','!‘ - T, for all (l, ]) € A.

Solving the LP relaxation is accelerated by generat-
ing several columns simultaneously. This is possible
as the one-time solution of a subproblem by dynamic
programming not only produces the minimum mar-
ginal cost column but also many other columns of
negative marginal cost. The routes (columns) selected
to be added to the LP relaxation are almost disjoint
as this enhances the efficient discovery of integer
solutions. Furthermore, as set covering characteriza-
tions of vehicle routing applications exhibit high
degeneracy, we further accelerate the convergence of
the simplex method by a perturbation strategy on the
right-hand side of constraints (2).

4.2 Solving the Subproblem

A primal-dual algorithm developed for the resolu-
tion of the shortest path problem with resource con-
straints (Desrochers 1988) computes the cost Gi(g, ?)
(or Hy(g, t) and H/(q, t)) by progressive refinement
of lower and upper bounds on its value. The algorithm
requires the creation of two sets of labels at each node.
The first set includes the labels associated with feasible
paths and defines primal solutions which provide an
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upper bound on the cost of efficient solutions at each
node. The second set includes the labels associated
with lower bounds on the cost of a path ending at
node j with a given state value. The algorithm modifies
the sets of labels until the optimal solution is obtained.
For a set S of states at node j, labels are created
through a “pulling” process. Labels associated with
feasible paths from the origin to node j are obtained
by extending all feasible paths from the origin to node
i for which the addition of arc (i, j) allows arrival at
node j in a state belonging to S. All the new labels at
a given iteration are created at a single node, in
contrast with other dynamic programming approaches
requiring updating at several nodes per iteration. With
proper implementation, this method has a worst case
complexity O(Q*(Tien(b; + 1 — a;))?).

We first present a pulling algorithm used to solve
the second model described in Section 3. Let Gi(q, t)
and G(q, t) be a lower bound and an upper bound
on Gy(q, t), respectively. P; is defined as the set of all
states at node j having equal lower and upper bounds.
P, is the complement of P, i.e., the set of all states at
node j such that G;(q, t) < Gi(q, 1).

Definition. Given (qi, t,) and (¢, 1) € R?, (qi, 1) is
said to be lexicographically smaller than (¢, t,) if and
only if s < go, or g1 = gz and t, < t,.

The Pulling Algorithm

Step 1. Initialization. Initialize the lower bounds
Gj(g, t) = —, the upper bounds G,(g, t) = o« for all j,
gand fsuchthat jE N\{d},0s¢g<Q,andg <t <
b;. Initialize also G,0, 0) = G,0, 0) = 0. Finally,
initialize the sets P; = &, j € N \{d} and P, = {(0, 0)}.

Step 2. Search for a state (g, t) to be treated. Find
the state (g, ¢) of minimum lexicographic value from
the set W= Uen(P). If W= @, stop.

Step 3. Treatment of state (g, ¢) of node j. Compute
new lower and upper bounds:

Gi(g, )= min {Gi(q', t") + G|t + 1<,
(i,))EA
a;st’'<band ¢’ + g < g}.
Gi(g, t) = min {G(q’, t') + G|t + 1 < ¢,
(i,))EA

a;, < ' < b,-andq' + quq}.
Update set P;. Return to Step 2.
We now describe a pulling algorithm with 2-cycle
elimination used to solve the third model of

Section 3. Let Hi(q, t) and Hi(q, t) be a lower
bound and an upper bound on Hj(g, t), respectively.
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H/(q, t) is an upper bound on H/(g, t). P; is defined
as the set of all states at node j having equal lower and
upper bounds. P; is the complement of P;; _i.e., the set
of all states at node j such that Hi(q, t) < Hi(q, ?).
The Pulling Algorithm With 2-Cycle Elimination

Step 1. Initialization. Initialize the lower bounds
Hi(gq, t) = —o, the upper bounds H(q, 1) = oo,
H/(q, t) = o, and the predecessors p;(g, ¢) = nil,
for all j, ¢ and ¢ such that j E_N\{d}, 0<sg=<Q,
and a; < ¢ < b;. Initialize also H,(0, 0) = H.(0, 0) =
0. Finally, initialize the sets P, = @, j € N\{d} and
Pd = {(O’ O)i' .

Step 2. Search for a state (g, t) to be treated. Find
the state (g, ) of minimum lexicographic value from
set W= Ujen(P). If W=, stop.

Step 3. Treatment of state (g, ¢) of node j. Compute
new lower and upper bounds:

Hy(g, )= min {[Hq', ')+ &lj# pla’s '),
)
UV+t;st,ag <t < b,
ai<t' <bandq + g <ql,
[Hi(qg', t') + &;lj=pAq’s '),
U/ +tystast <b,
a;<t' < bandq’ +q <q].
Set the predecessor p;(g, t).
Hi(g,1)
= min {[H(q’,1")+&|j#p(q’, 1),
(i,))EA
l¢pj(q’ t)a '+ li/s Z
a;st’s<sbandq’+g;<q,
[Hi(q',t")+Cli=pla’,t"),
i#p(q, )t +t;sta;st’ <b,
and ¢" + ¢; < ql},
Hi(g, t) = min {H(q', t') + &t + t; <,
(i,))eAd
<t <bandq +q <gql
Update set P;. Return to Step 2.

5. THE BRANCH -AND-BOUND SCHEME

When the subproblem does not generate any more
negative marginal cost columns, the simplex algo-
rithm provides the optimal solution of the linear relax-
ation of the set covering type formulation. If the
solution is integer and each customer is covered

exactly once, the solution is also optimal for the
VRPTW. Otherwise, the linear relaxation of the set
covering type model may be fractional or some cus-
tomers may be covered more than once. In either case,
a branch-and-bound tree must be explored, and addi-
tional columns might be generated at each branch. In
practice, however, overcovering has never arose. Fur-
thermore, this condition is guaranteed not to occur if
the cost matrix satisfies the strict triangle inequality.
The design of the branch-and-bound strategies is of
extreme importance in a column generation scheme
because branching decisions are taken with reference
to the fractional solutions of the generated columns,
and these decisions must be compatible with the sub-
problem structure for the generation of new columns.

The branching strategies designed for the VRPTW
can be separated into two categories. At the first level,
the integrality of the number of vehicles used and the
total distance traveled is required. This branching level
involves all the columns of the set covering formula-
tion. At the next level, branching decisions are taken
locally on the arcs of the network. This second branch-
ing level only involves very few columns.

At the first level, if the number of vehicles used is
fractional, say X, = v, two branches are created: one
with X, < lv] and the other with X, = lv1. In each
case, the dual variable 7, associated with constraint
(3) is adequately transferred to the subproblem. Next,
in each branch, if the solution is still fractional, it is
possible to add a cut on the total distance traveled
(which is minimized in the objective function). In fact,
if X, is fractional, say X, = ¢, the cut on the total
distance traveled is equivalent to restricting X, to be
greater or equal to [c1. The dual variable, =., associ-
ated with constraint (4) is also easily transferred to the
subproblem. This first level process is repeated every-
where it is needed in the branch-and-bound tree. Each
time the branching strategy on the number of vehicles
or the cut on the total distance is utilized, the current
solution becomes infeasible. Reoptimization may be
carried out with Phases I and II of the simplex algo-
rithm or with the dual simplex algorithm.

At the second level, branching decisions are taken
on the arcs of the subproblem network. Note that it is
possible to fix a fractional variable x, at one. This
information is easily transferred to the subproblem by
fixing the value of the flow on each arc of the route at
one, that is, by removing from the network the other
arcs incident to the nodes visited by route ». However,
it is impossible to directly fix variable x, at zero.
Rather, it is necessary to explore many combinations
of the flow values of the arcs of the route. Such a
strategy is described in Desrosiers, Soumis and



Desrochers. In the actual solution procedure for
the VRPTW, we have chosen a single arc branching
strategy. We next describe this strategy.

Columns that contain cycles are chosen first. For
each column, a score is given to the arcs incident to
nodes visited more than once (e.g., four arcs for a
node visited twice). The score of an arc is a function
of the total flow value on that arc, that is, a combi-
nation of the flow from all the nonzero basic variables.
The arc with the best score is chosen and two branches
are created, at 0 and 1, respectively. If there exists no
columns that contain cycles, fractional variables are
next examined. Some of them are discarded if each
arc of the column has a total flow value of one. For
the others, a score (which depends on the variable
value) is calculated. Next, for the set of columns with
good scores, each arc is evaluated by a score (which
depends on the combined flow value on the arc). The
arc with the best score is chosen and two 0-1 branches
are created.

Finally, if arc (i, j) is fixed at 0, it is simply removed
from the subproblem network. The cost of all columns
generated that use that arc are penalized. Then, the
solution of the set covering type formulation is still
feasible but at a very high cost. After optimization
over the current columns, new columns are generated
as needed. If arc (i, j) is fixed at 1, arcs (i, k) € A4,
k # jand (], j) € 4, | # j are removed from the
subproblem network. Moreover, columns that use arcs
(i, k) € A, k # j or arcs (/, j) € A, | # i are also
penalized and new columns are generated as needed.

6. COMPUTATIONAL EXPERIMENTS

6.1. Time Window Reduction

As stated in Section 4.2, the worst case complexity of
the dynamic programming algorithms is

O(Q*(Zien(bi + 1 — a))?).

Hence, in this case, complexity is a function of time
window width and vehicle capacity. To improve the
efficiency of these algorithms, we reduce the time
windows’ width using four conditions:

1. minimal arrival time from predecessors:

@ = max{ay, min{by, mingneafa; + tul}};
2. minimal arrival time to successors:

a, = max{a, min{ky, ming pea{a, — i}l
3. maximal departure time from predecessors:

bi = min{b,, max{ar, max e + til};
4. maximal departure time to successors:

br = min{b,, max{ar, max ealb; — ti}}}.
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The above conditions are applied sequentially at
each node. The set of nodes is examined cyclically
until no further reductions are possible. Generally,
two or three cycles are sufficient. At the end of this
process, some arcs can be eliminated. Conditions 2
and 3 were derived independently by Cyrus (1988). In
some cases, similar conditions may be applied to the
capacity constraints at some nodes. These time con-
ditions will be now illustrated on a small network
having four nodes and three arcs.

In Figure 2, we compute the earliest arrival time at
each node. At nodes 2 and 3, the earliest arrival time
is greater than the start of the time window, thus, we
can increase the time window start by one unit at
these nodes. In Figure 3, we compute the earliest
departure time from each node inducing no waiting
time at its successors. At node 3, the latest such
departure time is greater than the start of the time
window, so we can increase the window start by two
units at this node. In Figure 4, the latest arrival time

node 1
0 234567
node 2
6\7 8 9 10 1112 13
node 3
8\\“<
node 4

]

16 17 18 19 20 21 22 23

4727, Eliminated parts of time window

Figure 2. Example of time window reduction using
rule 1.

node 1
0 2 3 45 6 7

node 2
6\7 8 9 10 11 12 13

node 3

node 4
16 17 18 19 20 21 22 23

2777 Eliminated parts of time window

Figure 3. Example of time window reduction using
rule 2.



350 / DESROCHERS, DESROSIERS AND SOLOMON

node 1
01 2 3 45 6 7

node 2 ]
7 8 910 11 12 1\\
node 3
node 4 \W/‘MJ

16 17 18 19 20 21 22 23

“#¢  Eliminated parts of time window

Figure 4. Example of time window reduction using
rule 3.

at each node is computed. It is impossible to arrive
at node 4 after time value 17, and we can reduce
the time window end by six units at this node. In
Figure 5, we compute the latest departure time of
each node that is legal for all its successors. At nodes
1 and 2, the latest such departure time is smaller than
the time window end. We can reduce the time window
end by one unit at node 1 and by four units at node
2. Note that further reductions are still possible in this
example.

6.2. Description of the Test Problems

To conduct the computational experiments we have
used three of the six benchmark problem sets devel-
oped by Solomon (1987). The actual data are available
from the authors. The geographical data are randomly
generated by a random uniform distribution in prob-
lem set R1, clustered in problem set C1, and a mix of
randomly generated data and clusters in problem
set RC1. All the test problems are 100-customer
euclidean problems. Travel times between customers
are equal to the corresponding distances truncated to
one decimal place. All values are then multiplied by
10 to obtain integers. The customer demands are
relatively small compared to the vehicle capacity.
These problems have a short scheduling horizon. In
problem sets R1 and RC1 the time windows have a
uniformly distributed, randomly generated center and
a normally distributed random width. The time win-
dows’ width is then reduced in a preprocessing step,
as illustrated in the previous section. In problem set
C1, however, the time windows are positioned around
the arrival times at customers of a 3-opt, cluster-by-
cluster routing solution. The time windows’ width is
derived and reduced as above. Depending on the
problem, the density of the time windows is 25, 50,

75, or 100%. From a given problem in sets R1, Cl1,
or RC1, we have generated additional test problems
by considering only the first 25 or the first 50 cus-
tomers. Therefore, a total of 87 problems were tested.

6.3. Computational Results

To analyze the behavior of the VRPTW optimization
algorithm described in the previous sections, this algo-
rithm was programmed in FORTRAN using the
GENCOL software for column generation (Sanso et
al. 1990). The algorithm was compiled using the
F77 compiler (optimize option) and run on a SUN
SPARK 1 workstation. Two versions of the algo-
rithm were implemented. They differ in the respect
that the second version involves the elimination of
2-cycles. We present only the computational results
for the version with 2-cycle elimination which per-
forms much better than the other. An initial solution
is obtained by assigning one vehicle per customer.
Computational results are presented in Tables I-III.
In these tables, for each problem presented in column
one, the next two columns describe the network size
after preprocessing (the number of nodes and arcs).
Columns four, five and six highlight the quality of the
solution, i.e., the LP bound, the value of the optimal
integer solution divided by 10, and the number of
vehicles used. Finally, some characteristics of the col-
umn generation and the branch-and-bound proce-
dures (the number of nodes explored, the number of
columns generated and total CPU time in seconds)
are presented in columns 7-9.

As can be seen from Tables I-III, the algorithm was
able to optimally solve 29 problems involving
25 customers out of the 29 tested, 14 problems with
50 customers and 7 problems with 100 customers.

node 1
01 2 3 4 5 6

node 2
7 8 9\1I0 11 12 13

node 3

node 4

% Eliminated parts of time window

Figure 5. Example of time window reduction using
rule 4.
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Table I
Computational Results on Problem Set R1

Lp 1P

Problem Nodes Arcs Solution Solution Vehicles

B-B Nodes Columns
Explored Generated CPU Time

R101 25 227 617.1 617.1
50 817 1034.6 1035.2
100 3272 1604.5 1607.7
R102 25 404 546.4 547.1
50 1437 904.6 904.6
100 5336 14340  1434.0
R103 25 510 454.6 454.6
50 1859 765.4 772.5
100
R104 25 559 416.9 416.9
50
100
R105 25 303 526.0 530.5
50 1076 891.7 899.3
100
R106 25 458 457.3 467.4
50 1642 783.3 785.2
100
R107 25 542 423.0 424.3
50 1995 703.2 711.1
100
R108 25 586 396.2 397.2
50
100
R109 25 411 441.3 441.3
50
100
R110 25 530 425.4 429.5
50 2026 692.4 697.0
100
RI111 25 526 423.5 428.8
50
100
R112 25 647 383.9 393.0
50
100

8 1 78 5.8
12 11 1395 66.7
18 23 8596 1064.2

7 3 165 20.3
11 1 591 67.8
17 1 2126 756.9

5 1 246 222

9 173 37330 8939.1

4 1 419 46.0

6 7 554 22.6

9 33 4458 362.6

5 15 2451 205.2

8 5 1688 386.4

4 21 3191 304.1

7 79 19816 7362.1

4 3 1041 307.4

5 1 207 14.4

4 5 655 64.3

7 53 15341 4906.1

4 15 2794 330.0

4 21 2643 623.3

The method proved most successful on the clustered
data (problem set C1) where it was able to optimally
solve 20 of the 27 problems including 5 out of the
9 problems with 100 customers. Two additional
100-customer problems were solved optimally on R1.
The problem set RC1 proved difficult to solve. We
conjecture that most of this difficulty could be
removed by employing a more sophisticated branch-
ing scheme. We elected not to include computational
results for the problems not optimally solved. The
empty lines are there as a challenge for future research.
The reader can also observe that problems with an
average of up to 10 customers per vehicle were solved
in the numerical experiment.

The results also reveal that the LP relaxation of the
set covering type model provides an excellent primal

lower bound which in turn allows the efficient deri-
vation of an optimal solution by branch and bound.
For 27 problems out of the 87 attempted, the lower
bound is equal to the optimal value. For the other
problems, the average integrality gap is 1.5% (the
maximum gap is 12.1%.) Therefore, solving the sub-
problem with integer variables results in a small inte-
grality gap, allowing the implicit exploration of a part
of the integrality gap of the set covering type model.
In terms of computational time, the width of the
time windows relative to the scheduling horizon and
their density had a strong effect on the algorithm. The
column generation method was more efficient for the
more tightly constrained problems and those with
higher time window density. In these cases, the sub-
problems generating feasible routes are easy to solve
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Table 11
Computational Results on Problem Set C1
LP IP B-B Nodes Columns
Problem Nodes Arcs Solution Solution Vehicles Explored Generated CPU Time
C101 25 332 1913 191.3 3 1 498 18.6
50 1217 362.4 362.4 5 1 870 67.1
100 4515 8273 827.3 10 1 3768 434.5
C102 25 473 190.3 190.3 3 1 534 79.7
50 1732 361.4 361.4 5 1 1554 330.2
100 6581 827.3 827.3 10 1 4038 1990.8
C103 25 569 190.3 190.3 3 1 447 134.7
50 2165 361.4 361.4 4 1 1769 896.0
100
C104 25 604  186.9 186.9 3 1 485 223.9
50
100
C105 25 357 191.3 191.3 3 1 531 25.6
50 1333 362.4 362.4 5 1 1142 99.1
100
C106 25 336 191.3 191.3 3 1 447 20.7
50 1272 362.4 362.4 S 1 1170 91.3
100 5423 827.3 827.3 10 1 3681 724.8
C107 25 377 191.3 191.3 3 1 514 31.7
50 1443 362.4 362.4 5 1 1725 170.6
100 5621  827.3 827.3 10 1 4970 - 1010.4
C108 25 431 191.3 191.3 3 1 513 43.1
50 1643 362.4 362.4 5 1 1605 245.6
100 6344 8273 8273 10 1 4989 1613.6
C109 25 482 189.4 191.3 3 3 1747 585.4
50
100
Table II1
Computational Results on Problem Set RC1
LP 1P B-B Nodes Columns
Problem Nodes Arcs Solution Solution Vehicles Explored Generated CPU Time
RCI101 25 277 405.1 461.1 4 99 6399 225.4
50
100
RC102 25 408 346.0 346.0 3 1 255 18.1
50
100
RC103 25 518 332.1 332.8 3 5 953 103.0
50
100
RC104 25 564 305.9 306.6 3 6 1273 177.9
50
100
RC105 25 372 411.0 411.3 4 5 488 37.4
50
100
RC106 25 388 338.3 345.5 3 27 2064 248.4
50
100
RC107 25 513 293.3 298.3 3 3 473 113.9
50
100
RC108 25 617 280.3 294.5 3 11 1126 256.0
50




by dynamic programming since the sets of feasible
states are relatively small. Furthermore, even in such
cases, the LP relaxation provides excellent bounds. In
contrast, the bounds produced by other relaxations
generally deteriorate with increases in the tightness of
the time window constraints. Finally, the number of
columns generated is quite large since many negative
marginal cost columns are introduced in the model
each time the subproblem is solved. This column
generating procedure reduces the total CPU time.

7. CONCLUSIONS

In this paper, we have presented the development of
a new optimization algorithm which uses a column
generation approach for a set partitioning formulation
for the VRPTW. Our results indicate that this algo-
rithm proved to be very successful on a variety of
practical sized benchmark VRPTW test problems.
The algorithm was capable of optimally solving prob-
lems of a size six times larger than any reported to
date by other published research. We consider the
performance of our method on the test problems
indicative of its performance in general.

Many optimal approaches proposed to date for sim-
pler variants of the VRPTW suffer from the drawback
that the size of the problems they are capable of solving
decreases dramatically with increases in the size or
complexity of the constraints. The column generation
approach, however, is capable of solving much larger
problems with a greater number of complex con-
straints by incorporating the hardest constraints at key
points of the solution approach. This approach is
robust as the LP relaxation gives very good lower
bounds even when the time windows are widened or
their number decreased. This approach is also very
flexible as near-optimal solutions can be obtained to
much larger problems by early termination of the
algorithm. Note, however, that the set partitioning
model (solved either directly or by column generation)
stops being competitive in environments involving
many customers to be visited on the same route. This
is because, in such cases, the density of the LP
increases and degeneracy becomes a problem.

In addition to removing some of the computational
barriers that existed to date for the generic VRPTW,
our results will also lead to further standardization of
the computational experiment to be conducted in this
field. The optimal solutions to realistic sized problems
obtained here can be used to benchmark the effective-
ness of future approaches.

The approach presented in this paper can easily be
extended to even more difficult problem variants.
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Multiple time windows per customer can be modeled
by using as many nodes as time windows for each
customer. Only one node will be visited among the
nodes associated with a given customer. Two other
extensions have been solved in Haouari, Dejax and
Desrochers (1990). These are the heterogeneous fleet
problem and the multiple depot problem.
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