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Abstract

In this paper a multi-start local search (MSLS) heuristic is proposed for the vehicle routing problem with time

windows (VRPTW). In VRPTW the objective is to design least cost routes for a fleet of identical capacitated vehicles to

service geographically scattered customers within pre-specified service time windows. The suggested approach is based on

aMSLS framework and several new improvement heuristics. A new speedup technique is introduced for the construction

heuristics, and the results of the MSLS are post-optimized by a threshold accepting post-processor. Experimental results

on 358 benchmark problems from the literature show that the suggested method is highly efficient and competitive.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the vehicle routing problem with time win-

dows (VRPTW) the objective is to design least cost

routes from a single location (the depot) to a set of
geographically scattered points (the customers).

The routes must be designed in such a way that

each point is visited only once by exactly one ve-

hicle within a given time interval. All routes start

and end at the depot, and the total demand of all

points on one particular route must not exceed the

capacity of the vehicle.
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Triggered by a vast array of applications and its

intrinsic difficulty, the VRPTW has been the sub-

ject of intensive research. As solving the NP-hard

VRPTW (Lenstra and Rinnooy Kan, 1981) to

optimality remains hard, even for problem in-
stances involving just one hundred customers

(Kohl, 1995; Larsen, 1999; Kohl et al., 1999; Cook

and Rich, 1999), research has focused on heuris-

tic approaches. These VRPTW heuristics can

be divided in construction heuristics, improvement

heuristics (local searches) and metaheuristics.

Construction heuristics build routes sequentially

or in parallel. Sequential route construction
heuristics build routes one at a time until the

route�s scarce resources (e.g. capacity, maximum
driving distance or time) are depleted, without

violating time window constraints. Parallel route
ed.
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construction heuristics create several routes si-
multaneously. Different variants of construction

heuristics can be found in Solomon (1987), Potvin

and Rousseau (1993), Bramel and Simchi-Levi

(1996), Dullaert and Br€aysy (in press) and Ioannou
et al. (2001).

Improvement heuristics are used to obtain

higher quality solutions by trying modifications to

the incumbent solution. For the most successful
applications to the VRPTW, see Thompson and

Psaraftis (1993), Potvin and Rousseau (1995),

Russell (1995), Shaw (1997), Shaw (1998), Caseau

et al. (1999) and Cordone and Wolfler-Calvo

(2001). Construction and improvement heuristics

are discussed in detail in Br€aysy and Gendreau (in
press a). Metaheuristics are used to guide con-

struction and improvement heuristics to escape
local optima. High-quality results are obtained in

Rochat and Taillard (1995), Taillard et al. (1997),

Gambardella et al. (1999), Homberger and Geh-

ring (1999), Liu and Shen (1999), Bent and Van

Hentenryck (in press), Berger et al. (2003), Cor-

deau et al. (2001), Gehring and Homberger (2001),

Ibaraki et al. (in press), Li et al. (2003), Czech and

Czarnas (2002), and Rousseau et al. (2002). For
more details, we refer to the recent survey

on metaheuristics by Br€aysy and Gendreau (in
press a).

Recent literature reviews (Br€aysy and Gen-
dreau, in press a,b) reveal that the previously de-

veloped heuristics and metaheuristics for the

VRPTW show significant variability in perfor-

mance. The solutions obtained with the traditional
construction and improvement heuristics are often

far away from optimum, and these methods are

also highly dependent on the initial solutions.

Better results can be obtained with different

metaheuristics, but they often require considerable

computational effort, do not scale well, and fail to

convincingly provide a single robust and successful

technique. Given the practical importance of the
VRPTW, further research on this topic is justified.

The main contribution of this paper is the de-

velopment of an efficient and robust multi-start

local search (MSLS) heuristic for the VRPTW. We

consider the higher efficiency of our approach

compared to previous approaches practically rel-

evant, especially in dynamic real-life problems.
The suggested method uses a two-phase approach.
In the first phase, a fast construction heuristic is

used to generate several initial solutions. Then,

injection trees (IT), an extension of the well-known

ejection chain (EC) approach (Glover, 1991, 1992),

are used to reduce the number of routes. In the

second phase, two new improvement heuristics,

based on CROSS-exchanges (Taillard et al., 1997)

are applied for distance minimization. Together,
Phase 1 and Phase 2 constitute the MSLS algo-

rithm. The best solution identified by the MSLS is

post-optimized using a threshold accepting (TA)

post-processor, introduced in Br€aysy et al. (in
press). The TA post-processor is powered by the

IOPT intra-route improvement heuristic (Br€aysy,
2001) and a new and highly efficient inter-route

improvement heuristic (GENICROSS), based on
the work of Gendreau et al. (1992) and Taillard

et al. (1997). The results on a set of 358 benchmark

problems from the studies of Solomon (1987),

Gehring and Homberger (1999) and Russell (1995)

illustrate the power of the suggested local search to

quickly generate high quality solutions and con-

firm the merits of the TA post-processor. The

resulting hybrid method is shown to be fast, cost-
effective and highly competitive.

The remainder of this paper is arranged as fol-

lows. First, an overview of the solution approach

is given. Then, the hybrid sequential insertion

heuristic as well as the new improvement heuristics

for minimizing the number of routes and travelled

distance are described in Section 2. Section 3 pre-

sents a description of the TA post-processor. The
empirical investigation is described in Section 4.

Conclusions are drawn in Section 5.
2. A new multi-start local search heuristic

The suggested local search consists of two

phases with an optional post-optimization proce-
dure (see Algorithm 1). In the first phase, a new

sequential insertion heuristic based on Br€aysy
(2001) is used to quickly generate a set of initial

solutions. IT, a new approach related to the con-

cept of EC (Glover, 1991; Glover, 1992) are ap-

plied to reduce the number of routes. In Phase 2,

modified intra- and inter-route CROSS-exchanges



Algorithm 1. Two-phase MSLS for the VRPTW

PHASE 1: BUILDING SOLUTIONS WITH THE SMALLEST NUMBER OF ROUTES (SEEPHASE 1: BUILDING SOLUTIONS WITH THE SMALLEST NUMBER OF ROUTES (SEE SECTIONSECTION 2.1)2.1)

• Read the problem data from file. Set a1 ¼ 0:7
while a16 1 do

• Set a2 ¼ 1� a1 and a3 ¼ 0:5
while a36 1:7 do

for 12 iterations do
• Use the construction heuristic to create an initial solution Si.

• Apply the Injection Tree procedure on Si until no more routes can be eliminated.

• If the number of routes ri in Si is less than or equal to the smallest number of routes found so far,
rb, set rb ¼ ri and store Si.

end for

• Set a3 ¼ a3 þ 0:2
end while

• Set a1 ¼ a1 þ 0:1
end while

PHASE 2: DISTANCE IMPROVEMENT ON THE SOLUTIONS FROM PHASE 1 (SEEPHASE 2: DISTANCE IMPROVEMENT ON THE SOLUTIONS FROM PHASE 1 (SEE SECTIONSECTION 2.2)2.2)

for all stored solutions Si, for which ri is equal to rb do
while no more improvements can be found in Si do

for all geographically close pairs of routes in Si do
• Try to improve the current pair of routes in Si using modified CROSS exchanges.

end for

for all individual routes in Si do
• Try to improve the current route using modified CROSS exchanges.

end for
end while

• If Si is better than the best solution found so far, Sb, set Sb ¼ Si.
end for

POST-OPTIMIZATION: DISTANCE IMPROVEMENT ON THE BEST SOLUTION FROM PHASE 2POST-OPTIMIZATION: DISTANCE IMPROVEMENT ON THE BEST SOLUTION FROM PHASE 2

(SEE(SEE SECTION 3SECTION 3))

• Try to improve Sb with the Threshold Accepting post-optimization.
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(Taillard et al., 1997) are invoked to reduce the
total distance of the solutions with the minimum

number of routes. The best solution obtained by

the MSLS after phases 1 and 2 can be post-opti-

mized by a TA post-processor to further reduce

the total distance of the solution.

2.1. Phase 1: Initial solutions and route reduction

2.1.1. Building initial solutions

Because of the high dependency between the

initial solutions and the final output, most meta-

heuristics work on a set of initial solutions. The

same strategy is used also here. For generating

the initial solutions we use a modification of the
sequential cheapest insertion heuristic of Br€aysy
(2001). We initialize routes by selecting randomly

an, as of yet, unrouted customer among the cus-

tomers farthest from the depot or among the

customers having earliest deadline for service. The

initialization criterion is selected randomly before

starting construction of a new solution. After

adding the initialization customer to the route,

unrouted customers are evaluated for insertion. To
speed up the construction heuristic, only custom-

ers that are geographically close to at least one of

the previously inserted customers on the route are

considered for insertion. We define an unrouted

customer to be geographically close if its distance

to one of the customers on the current partial
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route is less than d ¼ 0:30 times the maximum
distance between any pair of customers in the

problem. A similar strategy of limiting the search

according to the closeness of customers has been

used before for instance in Shaw (1997), Shaw

(1998), Liu and Shen (1999) and Berger et al.

(2003). The insertion cost of an unrouted customer

is defined as the weighted combination of addi-

tional detour and waiting time needed to insert a
customer at its best feasible insertion position in

the route. The customers farthest away from the

depot are usually the most difficult ones to route,

since there are often only a few feasible insertion

places available for them. Therefore, the selection

of these distant customers is favored by subtract-

ing from the insertion cost the distance of the

corresponding customer to the depot multiplied by
a user defined parameter a3. Once all insertion
costs and insertion places are evaluated, the

cheapest customer is chosen to be inserted in the

route. More formally the cost function Cu for

customer u is

Cu ¼ a1 � Du þ a2 � Wu � a3 � d0u; ð1Þ
where

Du ¼ diu þ duj � dij; ð2Þ

Wu ¼ W a
u � W b

u ; ð3Þ

a1 þ a2 ¼ 1; a3 > 0: ð4Þ
Notations diu, duj and dij refer to the distance be-
tween the corresponding pair of customers (i; u),
(u; j) and (i; j) and W b

u and W a
u correspond to the

total waiting time before and after the insertion

respectively. Finally, d0u is the distance from the
depot to customer u, and a1, a2 and a3 are pa-
rameter values determined by the user.

We used the following values during all com-

putational experiments: a1: 0.6–1.0 (in increments
of 0.1 units) and a3: 0.5–1.7 (in increments of 0.2
units). 1 All possible combinations of a1 and a3
values are tried 12 times because of the randomly

selected seed customers. This is because the ini-

tialization scheme seems to have high impact on
1 As the value of a2 is determined by a1, we need to specify
the value only for a1 and a3.
the results (Br€aysy, 2001). Therefore, 420 different
initial solutions are created in total.

To speed up checking the time window con-

straints on each insertion, we used push-forward

and push-backward strategies, introduced in Sol-

omon et al. (1988), and keep arrival times and

latest possible arrival times at each customer in

memory. In addition, a new speedup technique

was created to speed up the evaluation of the cost
of each move. As defined above, the insertion cost

is a weighted combination of distance and waiting

time (see Eq. (1)). The additional detour can be

easily calculated in constant time using Eq. (2).

For evaluating the waiting time or the duration of

the route, the common procedure is to loop

through the route once to evaluate each insertion

position within the route and sum up the waiting
times at all customers. However, by controlling the

order in which the insertion places within the route

are considered, it is possible to evaluate the change

in the total waiting time (and duration) in the

route in constant time using Eq. (3).

The key idea is to consider the insertion places

within the route in the order in which the cus-

tomers are currently serviced by the vehicle. That
is, we evaluate first the insertion between the depot

and the first customer, then between the first cus-

tomer and the second customer on the current

partial route, and so on. Each time, when evalu-

ating an insertion position, we accumulate the

waiting time at the customers considered so far.

More precisely, when evaluating the insertion be-

tween the depot and the first customer we calculate
the waiting time at the first customer before in-

sertion. Similarly, when considering insertion be-

tween the first and second customer we calculate

the waiting time before insertion at the second

customer and so on. Each time we accumulate the

waiting time such that when we consider insertion

between customers i and j, we know the sum of
waiting times at customers 1; . . . ; j. Let us denote
this accumulated waiting time by wa. In addition,

we keep in memory the total waiting time of the

route before insertion, wt. We also calculate the

waiting time at the newly inserted customer, wu,

and the change in arrival time at j, pf , which is
often called ‘‘push forward’’ (Solomon, 1987).

Three different cases can be distinguished. When
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evaluating insertion between the depot and the
first customer the total waiting time after the in-

sertion, ~wt, is ~wt ¼ wu if pf > wt, and ~wt ¼ wt þ
wu � pf otherwise. Both results are based on the
fact that the push forward generated by inserting a

customer between the depot and the first customer

can be eliminated by waiting time stored in the

route at the first customer and its successors.

Similarly, when considering the insertion between
the last customer and the depot, ~wt ¼ wt þ wu. In

other cases ~wt ¼ wu þ wa if pf > wt � wa, and
~wt ¼ wt þ wu � pf otherwise. Thus, the total wait-
ing time of the route and also duration of the route

can be calculated in constant time. As a result, the

insertion heuristic is capable of generating about

5000 feasible solutions for Solomon�s (1987) 100
customer problem instances in 1 second on a 700
MHz PC.

2.1.2. Reducing the number of routes

After creating an initial solution, an attempt is

made to reduce the number of routes in the solu-

tion using a new heuristic operator, named IT. The

IT are applied to all created initial solutions and

the procedure is repeated as long as one can reduce
the number of routes. The idea of using separate

strategies for reducing the number of routes in a

VRPTW is not new. It has been used for example

in Gambardella et al. (1999), Homberger and

Gehring (1999), Gehring and Homberger (1999),

Gehring and Homberger (2001), Berger et al.

(2003), Bent and Van Hentenryck (in press), and

Liu and Shen (1999). However, only Gehring and
Homberger (1999), Gehring and Homberger

(2001), and Bent and Van Hentenryck (in press)

have a separate phase for reducing the number of

routes in the beginning of the procedure, and none

of them uses a special operator for that purpose as

is done in our approach.

IT share similarities with EC. EC (Glover, 1991;

Glover, 1992) have been applied often in re-
cent VRP methodologies (Rousseau et al., 2002;

Br€aysy, 2001; Rego, 1998, 2001; Caseau et al.,
1999). In EC the basic idea is to combine series of

simple moves into a compound move. In a VRP

context these simple moves refer to removal of a

customer from its route and re-insertion of the

removed customer in another route. The goal is to
‘‘make room’’ for a new customer in a route by
first removing another customer from the same

route. In each phase within the EC, one customer

remains unrouted. The removal and insertion

procedures are repeated until one can insert a

customer to another route without the need to

remove (eject) any customer. Here we present IT

as an extension to the EC and apply it as a route

reduction procedure. Our IT was implemented on
the EC procedure of Br€aysy (2001).
Instead of first ejecting a customer from a route

to make room for a new customer, IT directly in-

serts customers in the target route, even if it leads

to violation of time window or capacity con-

straints. The rationale behind this is that by in-

serting customer u directly in another route rt, a lot
of computational effort can be saved compared to
repeating the insertion of u into rt each time a
customer is removed from rt. Moreover, contrary
to EC that remove one customer at a time from the

target route rt, IT conditionally remove an un-
limited number of customers from rt. More than
one customer can be removed only if they can be

inserted directly in a neighboring route rn 6¼ rt,
rn 6¼ re, without having to remove customers there
to maintain feasibility. If these re-insertions are

not feasible, the successful insertions are reversed,

and we proceed as in standard breadth-first search

EC. That is, we consider all possible removals of

one customer from rt that make it feasible after
inserting customer u. Here we start from the cus-
tomers causing highest increase in route distance,

and consider first removing and re-inserting them
in alternate locations. This way we consider first

all possible chains involving two insertions and

one ejection, then chains involving three insertions

and two ejections and so on.

The advantage of allowing multiple ejections in

IT compared to EC is that it makes the procedure

less dependent on the type of customers. That is,

EC are dependent on the fact that the customer
removed from the target route, and the customer

inserted in the target route, u, have similar demand
and time windows etc. For example, if the demand

of u is much larger than the average demand, the
EC approach often fails. Similarly, it is often dif-

ficult to relocate only the customers on rt hav-
ing similarities with u to alternate routes. The IT
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approach can therefore be considered to be more
flexible than EC.

In the implementation of the IT a number of

speed-up techniques were used to reconcile the IT�s
power with computation time considerations.

Since it is computationally easier to eliminate

shorter routes, they are considered first, and in

case of large-scale problems only a limited set of

shortest routes are considered for elimination.
Only geographically close routes are considered

for insertion, distant routes are disregarded. More

precisely, if the distance between the customer u
currently considered for insertion and all the cus-

tomers on the given route rt exceeds �d ¼ 0:30 times
the maximum distance between any pair of cus-

tomers in the problem, we do not even try to insert

u into rt. Good values for �d are problem dependent
as they depend on the problem structure, problem

size, etc. One could also determine the value based

on the current search status (number of chains in

the memory). A limited sensitivity analysis re-

vealed that �d ¼ 0:30 gave on average the best re-
sults. Memory requirements of the breadth-first

approach are kept reasonable by imposing a

maximum on the number of trees stored into
memory (1000) and their depth �c ¼ 8.
The idea of calculating accumulated waiting

time after each feasible insertion position is also

used to evaluate the changes in objective function

quickly. To further speed-up the procedure, in-

sertions that increase the distance of the target

route more than a dynamically adjusted limit �l are
ignored for feasibility checking. The rationale is
that checking feasibility of a move takes signifi-

cantly more time than evaluating the cost of the

move in VRPTW context (Br€aysy, 2001). The
starting value of �l is �l ¼ 1:25, and it is dynamically
adjusted in steps of 0.1 units to control the com-

plexity of the search such that only the most

‘‘promising’’ trees are kept in memory.

As for the construction heuristic, push-forward
and push-backward strategies (Solomon et al.,

1988) are applied, and information on arrival

times and latest possible arrival times at each

customer are maintained in memory to speed-up

the feasibility checks. As in the EC approach of

Br€aysy (2001), an efficient reordering procedure is
embedded in the IT procedure. The goal is to in-
crease the number of feasible relocations by trying
to reduce lateness in the target route using simple

intra-route re-insertions with first-accept strategy.

To control the complexity of the search, the

number of these re-insertions is limited to �i ¼ 5.

2.2. Phase 2: Distance improvement

The distance improvement is performed with
modifications of thewell-knownCROSS-exchanges

of Taillard et al. (1997), and it is applied only to

solutions having the minimum number of routes.

CROSS-exchanges work by relocating or ex-

changing a segment of consecutive customers

between two routes while preserving orientation.

Three modifications are introduced to widen the

search. First, we consider inserting customers in the
current segment also in inverted order in the al-

ternative route. This was found to provide valuable

improvements for VRPTWs with loose service time

windows. Second, the neighborhood of the original

CROSS exchanges is extended. In Taillard et al.

(1997) the segment from Route 2 is always inserted

to a location, where the segment from Route 1 was

removed. In our implementation we consider in
addition the most promising insertion position

(before the geographically closest customer) for

each segment removed from Route 2. Third, the

most promising moves are tried first and are im-

plemented in a first-accept strategy. These moves

consist of first removing segments that include

customers closest to the customers on the other

route and inserting them selectively. The selected
segments are first considered for insertion between

customers that are closest to it on the other route.

A number of implementation choices are

needed to reduce computation time as much as

possible. As checking feasibility of a route in a

VRPTW takes significantly more time than eval-

uating impact of the move on the objective func-

tion Br€aysy (2001), computation time is reduced
by evaluating the cost of the exchange first and

checking feasibility only if an improvement is

found. In checking the feasibility of the time

window constraints, we use the push-forward,

and push-backward techniques of Solomon et al.

(1988) and maintain in memory the arrival times

and latest possible arrival times at each customer.
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In case some infeasibilities are found, further
checks are disregarded. The maximum segment

length was set to 5.
3. Post-optimization

In this Section we describe a post-optimization

technique that uses two improvement operators
guided by the TA metaheuristic to further reduce

distance in the best solutions found in Phase 2.

TA (Dueck and Scheurer, 1990; Dueck et al.,

1993) is a modification of the well-known simu-

lated annealing (SA) metaheuristic (Metropolis

et al., 1953; Kirkpatrick et al., 1983; Aarts et al.,

1997). SA can be used to guide any improvement

heuristic in the following way. It always accepts
moves to neighboring solutions that do not worsen

the objective function value. More precisely, the

solution S in the neighborhood NðSÞ is accepted
as the new current solution if D6 0, where

D ¼ CðS0Þ � CðSÞ in which C denotes the objective
function. To allow the search to escape a local

optimum, a probabilistic approach is used to direct

the search. A move that worsens the objective
function value is accepted with a probability e�D=T

if D > 0, where T is a parameter called the ‘‘tem-
perature’’. The value of T is usually varied from a
relatively large value to a small value close to zero

according to a ‘‘cooling schedule’’, which specifies

the initial, and temperature values at each stage of

the algorithm.
Algorithm 2. Threshold Accepting post-processor for th

(1) Read a feasible solution, Si, created by the MSLS

for �n iterations do
(2) Order the routes in Si randomly.

for All pairs of routes in Si do
(3) Try to improve the current pair of routes in S

(4) Try to improve both individual routes in the
end for

(5) Lower the threshold by Dt : t ¼ t � Dt

(6) If a new best solution is found, store it: Sb ¼ Si.
iterations, restart the search from the best solution
Si ¼ Sb and t ¼ tmax. If t ¼ 0 for four iterations, re-i

end for

(7) Return the best solution obtained, Sb.
Dueck and Scheurer (1990) and Dueck et al.
(1993) simplified the SA procedure by leaving out

the stochastic element in accepting worse solu-

tions. Instead they introduced a deterministic

threshold, t, and suggest accepting a worse solu-
tion if its difference to the incumbent solution is

smaller or equal to the threshold. The new proce-

dure was named TA and it was indicated to per-

form better than SA. The key components of TA
are the function gðtÞ that determines the lowering
of the threshold during the course of the proce-

dure, stopping criteria as well as the methods used

to create initial and neighboring solutions.

Algorithm 2 describes the implementation of

our TA post-processor for the VRPTW. The

search consists of a user-defined number of itera-

tions (�n ¼ 500). Each iteration starts by putting
the routes in the current solution in random order

to further diversify the search. Accepting worse

solutions in the inter- and intra-route local search

operators is controlled by the current value of the

threshold t. A modification of the current solution
by the local search operators consists of replacing

a set of arcs by a new set of arcs. It is accepted if

the ratio of the new arc lengths to the old arc
lengths is smaller than (1þ t). More precisely, this
ratio is calculated by summing up the new arcs

lengths and dividing that sum with the total length

of the old arcs.

The level of the threshold is determined by the

linear function gðtÞ. Starting from a user-

defined maximum threshold tmax ¼ 1, the threshold
e VRPTW

(see Section 2). Set t ¼ tmax and Sb ¼ Si.

i using GENICROSS.

current pair of routes in Si using IOPT.

If no improvement has been found for �k
obtained so far at a re-initialized threshold:
nitialize the threshold t ¼ tmax.
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is reduced by Dt ¼ 0:025 units in each iteration
until zero is reached. If the stopping criterion, the

maximum number of iterations is not met, the

threshold is reset to the maximum value ðt ¼ tmaxÞ
and gradual lowering of the threshold is repeated

for the remaining iterations. During the local

search (Steps 3 and 4) the current best solution

found is maintained in memory. If no improve-

ment has been found for a certain number of it-
erations (�k ¼ 45), we try improving the best
solution with the threshold reset to its maximum.

In Step 6, the search is repeated for four itera-

tions with t ¼ 0 instead of immediately setting
t ¼ tmax. This is because in each iteration at most
one move to a neighboring solution is performed

for each pair of routes, and each accepted move

may trigger other improvements. Thus, several it-
erations are often required to reach the local op-

timum. The initial solutions are created using the

MSLS algorithm described in the previous section.

For exploring the neighboring solutions we use the

IOPT-operator, introduced in Br€aysy (2001) and a
new improvement heuristic, GENICROSS. IOPT

is a modification of well-known CROSS exchanges

(Taillard et al., 1997), where also inversion of the
order of the customers in the currently selected

segment is considered. Here it is used only for

intra-route optimization as inter-route exchanges

are handled by GENICROSS.

GENICROSS draws upon well-knownGENIUS

insertion heuristic (Gendreau et al., 1992) and

CROSS-exchanges (Taillard et al., 1997). The basic

idea of CROSS-exchanges is to exchange segments
of consecutive customers between routes. In

CROSS-exchanges an attempt is made to insert

segment S2 from route R2 only to a position in route
R1, where segment S1 was removed, instead of trying
all possible locations for S2 in R1. The GENICROSS
operator evaluates all possible exchanges of seg-

ments between two routes R1 and R2. The maximum
segment length is set to 5. Contrary to CROSS-
exchanges, GENICROSS uses a first-accept strat-

egy, and also considers moves in which the order of

the customers in the selected segments is inverted.

As this increases the complexity of the algorithm

significantly, several speedup techniques are used.

The cost of the exchange is evaluated first and

feasibility is checked only if an improvement is
found. To further speed up evaluating the cost of
moves, an exchange of segments S1 and S2 between
routesR1 andR2 is divided in two insertions: S1 from
R1 to R2 and S2 from R2 to R1. It is obvious that in
case of improvement one or both of these segment

relocations must improve the objective value.

Therefore, we consider inserting S2 to R1 only if
insertion of S1 to R2 improved the objective function
value. This does not affect the worst case complex-
ity, but makes the search a lot faster in practice.

To evaluate all possible moves, the GENI-

CROSS operator must be performed twice, in-

verting the role of the routes. The limitation of this

approach is that it considers only insertions be-

tween pairs of consecutive customers in the current

routes. However, in the case of simultaneous ex-

changes between two routes it is possible that the
insertion position of S1 in route R2 belongs to
segment S2 removed previously from R2. In this
case the actual insertion of S1 will be between
customers before and after the removed segment,

preventing an insertion between a pair of consec-

utive customers. So, as in the GENIUS insertion

heuristics of Gendreau et al. (1992), we consider

here also insertions between pairs of customers
that are not consecutive. The same speed-up

techniques as described in Section 2 for the MSLS

heuristics are used also here.
4. Computational experiments

We conducted an extensive computational study
in order to assess the proposed approach with re-

spect to robustness, scalability, and performance.

The goals were to investigate our basic approach

(denotedMSLS), to assess the effects of adding post-

optimization (combined approach denotedMSLS +

TA), and to compare both variants with state-of-

the-art approaches reported in the literature.

4.1. Experimental design

For the experimental investigation, we used a

set of 358 well-known benchmark problems from

the literature. The set consists of the 56 100-cus-

tomer problem instances of Solomon (1987), 300

benchmarks of Gehring and Homberger (1999)
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and two real-life problems of 417 customers by
Russell (1995).

The benchmarks of Solomon (1987) consists of

56 instances with 100 customers located in a

100 · 100 unit plane. The benchmark set contains
six different subsets called R1, R2, RC1, RC2, C1,

and C2. Locations of customers are uniformly

distributed in R1 and R2, and clustered in C1 and

C2. For groups RC1 and RC2, the clustered and
random distributions are mixed. Furthermore, for

instances of type 1, the capacity of the vehicle is

small and the time window at the depot is narrow.

Hence, only a few customers can be served by one

vehicle, and relatively many vehicles are needed.

Conversely, for instances of type 2, the vehicle

capacity and time windows are less constraining.

Hence more customers can be served by one ve-
hicle, and fewer vehicles are needed.

Gehring and Homberger (1999) constructed

similar sets of problem instances of 200, 400, 600,

800, and 1000 customers, with 60 instances in each

set. The two problem instances (called D417 and

E417) of Russell (1995) are extracted from a fast

food routing application in southeastern United

States. There are 417 customers in both problems.
The two problems differ only in that the problem

E417 has a higher percentage of tight time win-

dows. For all 358 instances, distances and travel

times between customers are measured by Euclid-

ean distance. Each customer (including depot) has

one time window for accepting service, an amount

of requirement, and a service time. For these in-

stances, minimizing the number of vehicles is
considered the primary objective. For the same

number of vehicles, the total travelled distance (or

total duration) is often used as the secondary ob-

jective in the literature. In our methodological

design, and the corresponding computational

study, total distance is regarded as the secondary

objective. The algorithms were coded in C++ and

the computational experiments were conducted on
a 700 MHz PC with 128 MB of RAM under the

Windows 98 operating system.

4.2. Reliability and robustness

Because the MSLS heuristic contains stochastic

elements, the reliability of the approach is an im-
portant property. To illustrate the performance of
the MSLS and MSLS+TA approaches, Table 1

lists, to the best of our knowledge, all VRPTW

heuristics for which best, average (or median), and

worst solutions to Solomon�s (1987) benchmark
problems have been reported. In the lower part of

the table, the results obtained by the MSLS and

MSLS+TA approaches over 30 independent runs

are reported. Table 1 presents both the number of
routes and the total distance, averaged with re-

spect to each problem group.

Comparing the approaches in Table 1 on their

reliability is hard because only solutions with the

same number of routes can be compared on their

total distance. The MSLS, even without post-

optimization, found higher quality solutions for

the R1, R2, RC1 and RC2 problem sets than the
other approaches listed in Table 1. For C1 and C2,

the MSLS is on par with its competitors.

The small variance in number of vehicles and

total distance between the best, average and worst

results obtained for each of the problem instances,

illustrates that our approach is reliable. The MSLS

and MSLS+TA approaches are also robust: they

obtain high quality results for the different prob-
lem instances. This can be shown by comparing

the results of the MSLS and MSLS+TA to the

other approaches in Table 1 or with the best ap-

proaches from the literature summarized in Table

3. Nevertheless, both approaches remain depen-

dent on the quality of the initial solution. Table 1

demonstrates that the TA post-processor improves

all MSLS results significantly, but the solutions
obtained from the worst MSLS results always re-

main inferior to the ones obtained from the best

MSLS results.

4.3. Scalability and adaptive search strategy

To investigate scalability, i.e., the relation be-

tween the CPU time and the problem size, we
calculated the average CPU time over all Solomon

(1987) and Gehring and Homberger (1999) cases.

For a fixed parameter setting for the 100, 200,

400, 600, 800, and 1000 customer cases by Solo-

mon (1987) and Gehring and Homberger (1999),

we observed that computing time rapidly grew

with the number of customers. This observation



Table 1

Comparison of the best, average (or median) and worst results for Solomon�s (1987) benchmarks

Author R1 R2 C1 C2 RC1 RC2

1. Rochat and Taillard (1995) Best 12.67 3.36 10.00 3.00 12.25 4.00

1204.76 988.43 830.32 591.43 1385.28 1166.78

Average 12.92 3.62 10.00 3.00 12.77 4.18

1222.36 990.09 836.87 610.28 1418.36 1244.77

Worst 13.17 3.91 10.00 3.00 13.25 4.38

1257.72 1004.07 858.75 653.38 1470.99 1417.02

2. Taillard et al. (1997) Best 12.25 3.00 10.00 3.00 11.88 3.38

1216.70 995.38 828.45 590.30 1367.51 1165.62

Average 12.33 3.00 10.00 3.00 11.90 3.38

1220.35 1013.35 828.45 590.91 1381.31 1198.63

Worst 12.50 3.00 10.00 3.00 12.00 3.38

1219.71 1031.33 828.45 592.57 1402.12 1239.14

3. Liu and Shen (1999) Best 12.17 2.82 10.00 3.00 11.88 3.25

1249.57 1016.58 830.06 591.03 1412.87 1204.87

Average 12.25 2.82 10.00 3.00 12.00 3.25

1253.68 1022.08 841.33 591.03 1416.11 1230.31

Worst – – – – – –

– – – – – –

4. Bent and Van Hentenryck (in press) Best 12.17 2.73 10.00 3.00 11.63 3.25

1203.84 980.31 828.38 589.86 1379.03 1158.91

Average 12.25 2.85 10.00 3.00 11.80 3.33

1208.40 986.90 828.38 609.39 1370.72 1167.24

Worst 12.58 3.09 10.00 3.00 11.88 3.38

1202.25 984.16 828.38 658.72 1374.21 1186.57

5. Homberger and Gehring (in press) Best 12.17 2.82 10.00 3.00 11.75 3.25

1217.77 959.41 830.22 592.04 1398.81 1144.91

Average 12.17 2.85 10.00 3.00 11.83 3.25

1217.79 959.84 832.24 592.12 1383.70 1158.05

Worst 12.17 2.91 10.00 3.00 11.88 3.25

1218.65 953.45 833.10 592.43 1371.99 1165.13

6. Br€aysy et al. (in press) Best 12.17 2.73 10.00 3.00 11.75 3.25

1208.57 971.44 828.38 589.86 1372.93 1154.04

Median 12.17 2.73 10.00 3.00 11.88 3.25

1215.23 975.93 828.38 589.86 1380.55 1170.85

Worst 12.17 2.73 10.00 3.00 12.00 3.25

1230.54 997.85 828.38 589.86 1386.22 1203.97

7. MSLS (this paper) Best 12.00 2.73 10.00 3.00 11.50 3.25

1222.55 968.77 828.38 589.86 1400.91 1139.51

Average 12.11 2.78 10.00 3.00 11.70 3.25

1232.18 982.47 828.44 590.31 1403.34 1162.43

Worst 12.25 2.91 10.00 3.00 12.00 3.25

1244.78 986.37 828.61 591.73 1394.96 1195.42

8. MSLS+TA (this paper) Best 12.00 2.73 10.00 3.00 11.50 3.25

1212.89 960.44 828.38 589.86 1389.20 1124.14

Average 12.11 2.78 10.00 3.00 11.70 3.25

1218.56 967.19 828.38 589.86 1389.68 1146.61

Worst 12.25 2.91 10.00 3.00 12.00 3.25

1222.86 961.40 828.38 589.86 1378.71 1177.62

(1) Results obtained without the diversification and intensification scheme, Silicon Graphics 100 MHz, 5 runs, 92.2 (138) min, (2) Sun

Sparc 10, 5 runs, 248 (248) min, (3) HP 9000/720, 3 runs, 20 (34) min, (4) Sun Ultra 10, 5 runs, 30 (318) min, (5) Pentium 400 MHz, 3

runs, 17.3 (93) min, (6) AMD 700 MHz, 3 runs, 14.1 (192) min, (7) AMD 700 MHz, 30 runs, 2.2 (30) min, (8) AMD 700 MHz, 30 runs,

2.6 (37) min.
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motivated our development of an adaptive search
strategy that will limit search effort as the problem

size grows, without heavily compromising solution

quality. The adaptive search strategy adjusts the

values of some control parameters according to

problem size.

First, within the inter-route exchanges of our

local search, only the subset of 30 customers that

are closest to the customers on the other route are
considered for relocation. For each segment, only

the 30 geographically closest insertion places are

considered. This mainly affects the computational

effort only in type 2 problems that are often more

time consuming from the viewpoint of distance

minimization. The other parameter adjustments

are detailed in Table 2, where we describe for each

problem size the number of initial solutions cre-
ated, percentage of shortest routes considered for

elimination, and number of iterations in the post-

optimization phase, respectively.

The number of initial solutions is controlled by

limiting the values tried for a3 and the number of
repetitions for the same values of a1 and a3 to try
also different seed selection schemes. The lower

and upper bounds for a3 remained the same all the
time (see Section 2.1), but in case of 200–600

customer problems we increment the value of a3 by
0.3 units (instead of 0.2) and for larger problems

by 0.5 units. Thus, for example in case of 800

customer problems, we try values 0.5, 1 and 1.5 for

a3 and values 0.6–1 in increments of 0.1 units for
a1. Thus, we try 3 values for a3 and 5 values for a1,
i.e., 15 combinations. Then, all 15 combinations
are tried twice leading to the total 30 initial solu-

tions. The values for other parameters are de-

scribed in Sections 2 and 3. The larger the problem

instance, the more the adaptive search strategy

limits the search efforts to keep computation times
Table 2

The parameter value adjustment for the large-scale test prob-

lems

Parameter/size 200 400 600 800 1000

Initial solutions 200 100 50 30 15

% Shortest routes 60 45 30 15 10

TA iterations 300 200 150 100 50
low. This slightly reduces the power of the

MSLS+TA approach and limits its use for prob-

lem instances with more than 1000 customers.

Three curves in Fig. 1 correspond to the CPU

time of local search alone (MSLS), local search

with post-optimization (MSLS+TA), and the
isolated CPU time of post-optimization (TA)

under the adaptive search strategy. The computa-

tion time needed for the MSLS heuristic clearly

grows with problem size. The TA post-processor

scales better as its computational effort increases

moderately as problem instances become larger.

The computational requirements of MSLS and

MSLS+TA are compared to state-of-the-art ap-
proaches in the next subsection.

4.4. Computational results

The results from our experimental investigation

on the 356 benchmark problems originating from

Solomon (1987) and Gehring and Homberger

(1999) are shown in Tables 3–8 below in a uniform
way. Each table presents results for a given prob-

lem size. The local search (MSLS), and local

search plus post-optimization (MSLS+TA) ap-

proaches, both with adaptive search, are compared

with state-of-the-art results from the literature. We

have included (to the best of our knowledge) all

the best performing approaches for which the

number of vehicles, total distance and computa-
tional effort have been reported. The first column

gives the reference. Columns R1, R2, C1, C2,



Table 3

100 customer benchmark problems

Reference R1 R2 C1 C2 RC1 RC2 CPU

Rochat and Taillard (1995) 12.58 3.09 10.00 3.00 12.38 3.62 Silicon Graphics 100 MHz,

1197.42 954.36 828.45 590.32 1369.48 1139.79 1 run, 92.2 (138) min

Taillard et al. (1997) 12.25 3.00 10.00 3.00 11.88 3.38 Sun Sparc 10,

1216.70 995.38 828.45 590.30 1367.51 1165.62 5 runs, 248 (1240) min

Homberger and Gehring (1999) 11.92 2.73 10.00 3.00 11.63 3.25 Pentium 200 MHz,

1228.06 969.95 828.38 589.86 1392.57 1144.43 10 runs, 13 (312) min

Gehring and Homberger (1999) 12.42 2.82 10.00 3.00 11.88 3.25 4·Pentium 200 MHz,
1198.00 947.00 829.00 590.00 1356.00 1144.00 1 run, 5 (48) min

Liu and Shen (1999) 12.17 2.82 10.00 3.00 11.88 3.25 HP 9000/720,

1249.57 1016.58 830.06 591.03 1412.87 1204.87 3 runs, 20 (102) min

Gambardella et al. (1999) 12.38 3.00 10.00 3.00 11.92 3.33 Sun Ultrasparc 1,

1210.83 960.31 828.38 591.85 1388.13 1149.28 1 run, 30 (210) min

Rousseau et al. (2002) 12.08 3.00 10.00 3.00 11.63 3.38 Sun Ultra 10,

1210.21 941.08 828.38 589.86 1382.78 1105.22 10 runs, 183.3 (19430) min

Gehring and Homberger (2001) 12.00 2.73 10.00 3.00 11.50 3.25 4·Pentium 400 MHz,
1217.57 961.20 828.63 590.33 1395.13 1139.37 5 runs, 13.5 (1458) min

Br€aysy (2001) 11.92 2.73 10.00 3.00 11.50 3.25 Pentium 200 MHz,

1222.12 975.12 828.38 589.86 1389.58 1128.38 1 run, 82.5 (198) min

Berger et al. (2003) 12.17 2.73 10.00 3.00 11.75 3.25 Pentium 400 MHz,

1230.22 1009.53 828.48 589.93 1397.63 1230.20 3 runs, 30 (486) min

Ibaraki et al. (in press) 12.00 2.73 10.00 3.00 n.a. 3.25 Pentium 800 MHz,

1216.03 960.29 828.38 589.86 n.a. 1129.44 1 run, 176 (1705) min

Bent and Van Hentenryck

(in press)

12.17 2.73 10.00 3.00 11.63 3.25 Sun Ultra 10,

1203.84 980.31 828.38 589.86 1379.03 1158.91 5 runs, 30 (1590) min

Li et al. (2003) 12.08 2.91 10.00 3.00 11.75 3.25 Pentium 545 MHz,

1215.14 953.43 828.38 589.86 1385.47 1142.48 3 runs, 30 (594) min

Homberger and Gehring

(in press)

12.08 2.82 10.00 3.00 11.50 3.25 Pentium 400 MHz,

1211.67 950.72 828.45 589.96 1395.93 1135.09 5 runs, 17.5 (473) min

Br€aysy and Dullaert (2003) 12.00 2.73 10.00 3.00 11.50 3.25 Pentium 700 MHz,

1220.14 977.57 828.38 589.86 1397.44 1140.06 3 runs, 9.1 (374) min

MSLS (3 runs) 12.00 2.73 10.00 3.00 11.50 3.25 AMD 700 MHz,

1235.22 979.88 828.38 589.86 1413.50 1152.37 3 runs, 2.1 (86) min

MSLS (30 runs) 12.00 2.73 10.00 3.00 11.50 3.25 AMD 700 MHz,

1222.55 968.77 828.38 589.86 1400.91 1139.51 30 runs, 2.2 (901) min

MSLS+TA (3 runs) 12.00 2.73 10.00 3.00 11.50 3.25 AMD 700 MHz,

1220.20 970.38 828.38 589.86 1398.76 1139.37 3 runs, 2.6 (106) min

MSLS+TA (30 runs) 12.00 2.73 10.00 3.00 11.50 3.25 AMD 700 MHz,

1214.69 960.44 828.38 589.86 1389.20 1124.14 30 runs, 2.7 (1106) min

O. Br€aysy et al. / European Journal of Operational Research 159 (2004) 586–605 597
RC1, and RC2 present the average number of
routes and average total distance with respect to

the six problem groups of Solomon (1987). The

rightmost column describes the computer, number

of independent runs, and the CPU time used. For

each approach, two CPU times are given. First,

the one reported by the authors. Second (in the

parentheses), a modified CPU time, where the
computing times on various computers are scaled
to equal Sun Sparc 10, using factors of Dongarra

(1998). Moreover, if the results are the best ones

over multiple independent runs, the computation

times are multiplied by this number to illustrate

the total computational effort. The reader must

note that the computation times presented in the

parenthesis are only indicative, and should be used



Table 4

200 customer benchmark problems

Reference R1 R2 C1 C2 RC1 RC2 CPU

Gehring and Homberger (1999) 18.20 4.00 18.90 6.00 18.00 4.30 4 ·Pentium 200 MHz,
3705 3055 2782 1846 3555 2675 1 run, 10 (96) min

Gehring and Homberger (2001) 18.20 4.00 18.90 6.00 18.10 4.40 4 ·Pentium 400 MHz,
3855.03 3032.49 2842.08 1856.99 3674.91 2671.34 3 runs, 2.1 (136) min

Homberger and Gehring (in press) 18.20 4.10 19.00 6.00 18.10 4.50 Pentium 400 MHz,

3890.06 3059.78 2836.66 1898.44 3734.32 2640.94 3 runs, 1.6 (26) min

Bent and Van Hentenryck (in press) 18.20 4.10 18.90 6.00 18.00 4.50 n.a.

3677.96 3023.62 2726.63 1860.17 3279.99 2603.08

Li et al. (2003) 18.30 4.10 19.10 6.00 18.30 4.90 Pentium 545 MHz,

3736.20 3023.00 2728.60 1854.90 3385.80 2518.70 3 runs, 182.1 (3606) min

MSLS 18.20 4.00 18.90 6.00 18.00 4.40 AMD 700 MHz,

3884.95 3081.61 2791.15 1860.71 3543.36 2672.01 3 runs, 1.7 (68) min

MSLS+TA 18.20 4.00 18.90 6.00 18.00 4.40 AMD 700 MHz,

3718.30 3014.28 2749.83 1842.65 3329.62 2585.89 3 runs, 2.4 (98) min

Table 5

400 customer benchmark problems

Reference R1 R2 C1 C2 RC1 RC2 CPU

Gehring and Homberger (1999) 36.40 8.00 38.00 12.00 36.10 8.60 4 ·Pentium 200 MHz,
8925 6502 7584 3935 8763 5518 1 run, 20 (192) min

Gehring and Homberger (2001) 36.40 8.00 38.00 12.00 36.10 8.80 4 ·Pentium 400 MHz,
9478.22 6650.28 7855.82 3940.19 9294.99 5629.43 3 runs, 7.1 (460) min

Homberger and Gehring (in press) 36.40 8.00 38.10 12.00 36.10 9.20 Pentium 400 MHz,

9547.86 6683.53 7921.19 4049.71 9296.75 5609.88 3 runs, 5.1 (83) min

Bent and Van Hentenryck (in press) 36.40 8.00 38.00 12.00 36.10 8.90 n.a.

8713.37 6959.75 7220.96 4154.40 8330.98 5631.70

Li et al. (2003) 36.60 8.00 38.70 12.10 36.50 9.50 Pentium 545 MHz,

8912.40 6610.60 7181.40 4017.10 8377.90 5466.20 3 runs, 359.8 (7124) min

MSLS 36.40 8.00 37.90 12.00 36.00 8.90 AMD 700 MHz,

9225.95 6690.15 7464.09 3984.57 8836.49 5692.33 3 runs, 6.8 (276) min

MSLS+TA 36.40 8.00 37.90 12.00 36.00 8.90 AMD 700 MHz,

8692.17 6382.63 7230.48 3894.48 8305.55 5407.87 3 runs, 7.9 (322) min
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only to get a rough picture of the effort required to
get the reported results.

Table 3 shows that MSLS+TA generates

competitive results for the 100-customer problem

instances. Based on 3 runs, it is faster than the

main competitors and its results are within 0.36%

from the best-known on average. To generate a

single solution, the MSLS+TA spends on average

the same amount of time on route reduction as on
distance minimization. During the experiments

route reduction is attempted for each solution in
Phase 1. Distance minimization is only applied to
solutions having the minimum number of routes

(Phase 2) and to the best solution from Phase 2

during the TA post-optimization procedure. As a

result, on average, 2/3 of the reported CPU time is

spent on route reduction and 1/3 on distance

minimization.

Increasing the number of runs to 30, allows the

MSLS+TA approach to further reduce distance
for problem groups R1, R2, RC1 and RC2, but

reduces its speed advantage. Creating more initial



Table 6

600 customer benchmark problems

Reference R1 R2 C1 C2 RC1 RC2 CPU

Gehring and

Homberger (1999)

54.50 11.00 57.90 17.90 55.10 11.80 4·Pentium 200 MHz,
20 854 13 335 14 792 7787 18 411 11 522 1 run, 30 (288) min

Gehring and

Homberger (2001)

54.50 11.00 57.70 17.80 55.00 11.90 4·Pentium 400 MHz,
21 864.47 13 656.15 14 817.25 7889.96 19 114.02 11 670.29 3 runs, 12.9 (836) min

Homberger and

Gehring (in press)

54.50 11.00 57.90 18.00 55.20 12.20 Pentium 400 MHz,

21 605.60 13 682.21 15 086.01 7897.59 19 108.14 11 649.75 3 runs, 10.3 (167) min

Bent and Van

Hentenryck (in press)

55.00 11.00 57.80 17.80 55.10 12.40 n.a.

19 308.62 14 855.43 14 357.11 8259.04 17 035.91 11 987.89

Li et al. (2003) 55.20 11.10 58.20 18.20 55.50 13.00 Pentium 545 MHz,

19 744.80 13 592.40 14 267.30 8202.60 17 320.00 11 204.90 3 runs, 399.8 (7916) min

MSLS 54.50 11.00 57.80 18.00 55.00 12.10 AMD 700 MHz,

20 218.52 13 821.46 14 545.39 7918.32 17 953.54 11 993.25 3 runs, 14.6 (597) min

MSLS+TA 54.50 11.00 57.80 18.00 55.00 12.10 AMD 700 MHz,

19 081.18 13 054.83 14 165.90 7528.73 16 994.22 10 241.35 3 runs, 16.2 (661) min

Table 7

800 customer benchmark problems

Reference R1 R2 C1 C2 RC1 RC2 CPU

Gehring and

Homberger (1999)

72.80 15.00 76.70 24.00 72.40 16.10 4·Pentium 200 MHz,
34 586 21 697 26 528 12 451 38 509 17 741 1 run, 40 (384) min

Gehring and

Homberger (2001)

72.80 15.00 76.10 23.70 72.30 16.10 4·Pentium 400 MHz,
34 653.88 21 672.85 26 936.68 11 847.92 40 532.35 17 941.23 3 runs, 23.2 (1503) min

Homberger and

Gehring (in press)

72.80 15.00 76.70 24.10 72.50 16.20 Pentium 400 MHz,

34 976.51 22 055.78 26 563.59 12 018.64 38 070.24 17 980.04 3 runs, 18.2 (295) min

Bent and Van

Hentenryck (in press)

72.70 15.00 76.10 24.40 73.00 16.60 n.a.

33 337.91 24 554.63 25 391.67 14 253.83 30 500.15 18 940.84

Li et al. (2003) 73.00 15.10 77.40 24.40 73.20 17.10 Pentium 545 MHz,

33 806.34 21 709.39 25 337.02 11 956.60 31 282.54 17 561.22 3 runs, 512.9 (10155)

min

MSLS 72.80 15.00 76.30 24.20 73.00 16.30 AMD 700 MHz,

34 642.71 22 426.39 25 729.99 12 316.53 31 757.39 18 763.66 3 runs, 24.1 (983) min

MSLS+TA 72.80 15.00 76.30 24.20 73.00 16.30 AMD 700 MHz,

32 748.06 21 170.15 25 170.88 11 648.92 30 005.95 17 686.65 3 runs, 26.2 (1069) min
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solutions in a single run would have the same effect

as doing several independent runs with less initial

solutions. The effect of different values for the

threshold and the effect of longer running times

for the TA post-processor are described in Br€aysy
et al. (in press). Individual results on the Solomon

(1987) problem instances are illustrated in the

Appendix A. The figures in bold represent the in-

stances for which the MSLS+TA approach mat-

ches best-known results.
The main strength of the MSLS+TA approach

lies in solving larger problem instances. As Table 4

shows for the 200-customer problems, the

MSLS+TA dominates the other approaches for

the R2 and C2 subclasses. For the remaining
subclasses, MSLS+TA is among the best. Hom-

berger and Gehring (in press) is faster, but it does

not perform as well. In the 400-customer bench-

mark cases, the MSLS+TA dominates the other

approaches for all subclasses except RC2, as



Table 8

1000 customer benchmark problems

Reference R1 R2 C1 C2 RC1 RC2 CPU

Gehring and

Homberger (1999)

91.90 19.00 96.00 30.20 90.00 19.00 4·Pentium 200 MHz,
57 186 31 930 43 273 17 570 50 668 27 012 1 run, 50 (480) min

Gehring and

Homberger (2001)

91.90 19.00 95.40 29.70 90.10 18.50 4·Pentium 400 MHz,
58 069.61 31 873.62 43 392.59 17 574.72 50 950.14 27 175.98 3 runs, 30.1 (1950)

min

Homberger and

Gehring (in press)

91.90 19.00 96.10 29.90 90.10 18.90 Pentium 400 MHz,

57 072.15 32 320.68 43 524.95 17 566.99 51 337.25 27 059.89 3 runs, 30.7 (497) min

Bent and Van

Hentenryck (in press)

92.80 19.00 95.10 30.30 90.20 19.40 n.a.

51 193.47 36 736.97 42 505.35 18 546.13 48 634.15 29 079.78

Li et al. (2003) 92.70 19.00 96.30 30.80 90.40 19.80 Pentium 545 MHz,

50 990.80 31 990.90 42 428.50 17 294.90 48 892.40 26 042.30 3 runs, 606.3 (12005)

min

MSLS 92.10 19.00 95.80 30.60 90.00 19.00 AMD 700 MHz,

54 200.44 32 937.11 42 905.15 17 778.87 49 972.74 27 627.25 3 runs, 36.8 (1500)

min

MSLS+TA 92.10 19.00 95.80 30.60 90.00 19.00 AMD 700 MHz,

50 025.64 31 458.23 42 086.77 17 035.88 46 736.92 25 994.12 3 runs, 39.6 (1616)

min
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shown in Table 5. Dominance is only due to lower
total distance, except for problem class RC1,

where the number of vehicles is also lower. For

RC2, Gehring and Homberger (1999) is superior.

Homberger and Gehring (in press) and Gehring

and Homberger (1999) are faster, but they do

not dominate our approach. For the R1, R2, and

RC1 subclasses of the 600-customer problem in-

stances (Table 6), MSLS+TA clearly outperforms
the other approaches due to lower distance val-

ues. For the C1, C2, and RC2 problems,

other approaches are better. Gehring and Hom-

berger (1999) and Homberger and Gehring (in

press) are again faster, but neither dominates

MSLS+TA. For the 800-customer problems,

MSLS+TA only dominates for the R2 subclass,

again due to lower distance value. For the re-
maining subclasses, our approach is outperformed,

but not consistently by the same approach. Geh-

ring and Homberger (1999) is faster and outper-

forms MSLS+TA for C2, RC1, and RC2. Table 8

for the 1000-customer instances shows that

MSLS+TA outperforms all other approaches

for the R2 subclass, although at the expense of a

higher computational effort when compared
with Gehring and Homberger (1999). For all
other classes, the number of vehicles is competi-
tive.

The results show that the MSLS approach

produces highly competitive results for the main

objective, i.e., number of vehicles, generally at a

much lower computational cost than the compe-

tition. Post-optimization based on TA significantly

improves the value of the secondary objective of

total distance, at a very low marginal computa-
tional cost. For equal number of vehicles, the total

distance results are highly competitive, and our

method produces the best results known in a

number of cases. Individual results on the Geh-

ring and Homberger (1999) problem instances

are presented in the Appendix A. The MSLS+TA

results are particularly favorable for the 400 and

600 instances. Our approach reduced the
total distance of 116 best-published solutions to

the 300 instances of Gehring and Homberger

(1999). Gehring and Homberger (1999) and

Homberger and Gehring (in press) are the only

approaches that scale better than MSLS+TA.

From 400 customers upwards, these two ap-

proaches are faster. Still, they do not dominate

our approach for any of the investigated problem
sizes.



Table 9

Results for the two problem instances by Russell (1995)

Reference CPU time

(minutes)

Runs D417 E417

Vehicles Distance Vehicles Distance

Thangiah et al. (1994) 26 – 54 4866 55 4149

Kontoravdis and Bard (1995) 11 5 55 4273.40 55 4985.70

Rochat and Taillard (1995) – – 54 6264.80 54 7211.83

Russell (1995) 7 3 55 4964 55 6092

Chiang and Russell (1996) 25 – 55 4232.39 55 4397.49

Taillard et al. (1997) – – 55 3439.80 55 3707.10

Chiang and Russell (1997) 37 – 55 3455.28 55 3796.61

Liu and Shen (1999) 45 3 54 3747.52 54 4691.14

Homberger and Gehring (1999) 30 5 54 4703 55 4732

Gehring and Homberger (2001) 142 5 54 3512.01 54 3832.24

Br€aysy (2001) 378 1 54 3506.21 54 3801.64

MSLS 45 3 54 3551.63 54 3927.40

MSLS+TA 47 3 54 3387.93 54 3672.73
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The results for the two instances of Russell

(1995) are shown in Table 9. Due to lack of in-

formation, we have not been able to produce a

normalized CPU time for all references. Instead,

we have listed CPU time and number of indepen-
dent runs as they are presented in the references.

The MSLS+TA approach improves the best

published (as far as we know) results for the

Russell (1995) problems, due to some 3% lower

total distance. Based on the known information,

our approach also seems to be at least as fast as the

main competitors.
5. Conclusions

The VRPTW is a much-studied, computation-
ally hard problem. It has many real-life applica-

tions, especially in the transportation industry.

For industrial problems, scalable methods that are

able to produce high quality results in a limited

time, even for several hundreds of customers, are

particularly important. With this focus, we have

developed a novel, two-phase MSLS for the

VRPTW. In the first phase, a sequential inser-
tion heuristic is used to generate a number of ini-

tial solutions in a short time. Then all solutions

are improved by a novel tour depletion ap-

proach. In the second phase, all solutions with the

minimal number of routes are further improved
with respect to distance by intra- and inter-tour

operators. The best solution obtained after phase 2

can be post-optimized by two other distance re-

duction operators that are embedded in a TA

metaheuristic search strategy. The new method has
been investigated on 358 well-known test problem

instances from the literature. Although it con-

tains some stochastic elements, empirical investi-

gation shows that the method is very robust and

reliable. Using an adaptive search strategy, the

method scales well up to 1000 customers. Speed

performance is particularly good up to problem

sizes up to some 500 customers. Comparisons
with the best known results in the literature show

that the method performs very favorable, and

produces several new best-published results. The

authors plan further investigations on scalable

methods for large-size VRPTW in order to address

industrial problems with several thousands of

orders.
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Appendix A
Results for the benchmark problems of Solomon (1987)
R1 R2 C1 C2 RC1 RC2

01/19/1650.80 01/4/1253.21 01/10/828.94 01/3/591.56 01/14/1697.43 01/4/1412.45

02/17/1486.12 02/3/1195.30 02/10/828.94 02/3/591.56 02/12/1558.07 02/3/1368.04

03/13/1293.69 03/3/944.55 03/10/828.06 03/3/591.17 03/11/1262.43 03/3/1061.16
04/10/985.33 04/2/838.56 04/10/824.78 04/3/590.60 04/10/1137.89 04/3/798.56

05/14/1377.11 05/3/1009.10 05/10/828.94 05/3/588.88 05/13/1642.53 05/4/1298.92

06/12/1253.23 06/3/913.24 06/10/828.94 06/3/588.49 06/11/1438.53 06/3/1152.14

07/10/1115.05 07/2/906.67 07/10/828.94 07/3/588.29 07/11/1233.30 07/3/1072.14

08/9/960.88 08/2/733.98 08/10/828.94 08/3/588.32 08/10/1143.42 08/3/829.69

09/11/1201.78 09/3/916.48 09/10/828.94

10/10/1119.00 10/3/939.91

11/10/1101.20 11/2/913.79
12/9/1010.52
Results for the benchmark problems of Gehring and Homberger (1999)
R1 R2 C1 C2 RC1 RC2

200

01/20/4821.90 01/4/4648.89 01/20/2704.57 01/6/1931.44 01/18/4009.75 01/6/3177.87

02/18/4215.76 02/4/3776.70 02/18/3017.51 02/6/1867.00 02/18/3364.23 02/5/2851.19

03/18/3409.23 03/4/2998.56 03/18/2803.60 03/6/1814.94 03/18/3080.54 03/4/2645.70

04/18/3120.48 04/4/2039.08 04/18/2662.49 04/6/1755.32 04/18/2922.80 04/4/2110.22

05/18/4380.41 05/4/3391.43 05/20/2702.05 05/6/1879.31 05/18/3587.17 05/4/3105.87

06/18/3667.17 06/4/2974.83 06/20/2701.04 06/6/1858.12 06/18/3549.09 06/5/2674.11

07/18/3262.44 07/4/2551.49 07/20/2701.04 07/6/1849.46 07/18/3386.56 07/4/2659.55

08/18/3000.46 08/4/1880.88 08/19/2804.23 08/6/1826.02 08/18/3157.72 08/4/2352.27

09/18/3934.92 09/4/3154.57 09/18/2741.52 09/6/1833.37 09/18/3148.18 09/4/2248.58

10/18/3370.20 10/4/2726.40 10/18/2660.29 10/6/1811.53 10/18/3090.20 10/4/2033.57

400

01/40/10629.89 01/8/9533.86 01/40/7153.10 01/12/4124.66 01/36/9657.15 01/12/6806.67

02/36/9425.63 02/8/7837.69 02/37/7501.54 02/12/3971.37 02/36/8317.46 02/10/6287.59

03/36/8028.00 03/8/6218.64 03/36/7302.08 03/12/3884.91 03/36/7820.79 03/8/5276.97

04/36/7503.39 04/8/4409.32 04/36/6953.08 04/12/3722.63 04/36/7471.43 04/8/3780.66

05/36/9877.32 05/8/7376.67 05/40/7152.06 05/12/3951.61 05/36/8753.52 05/10/5970.88

06/36/8692.75 06/8/6377.94 06/40/7154.76 06/12/3887.40 06/36/8577.35 06/9/5976.26

07/36/7802.09 07/8/5254.74 07/40/7149.44 07/12/3910.77 07/36/8412.15 07/8/5734.69

08/36/7466.31 08/8/4193.88 08/38/7208.43 08/12/3832.47 08/36/8148.61 08/8/5113.01

09/36/9115.36 09/8/6604.69 09/36/7688.24 09/12/3927.78 09/36/8047.53 09/8/4693.48

10/36/8380.96 10/8/6018.84 10/36/7042.09 10/12/3731.15 10/36/7849.51 10/8/4438.45



R1 R2 C1 C2 RC1 RC2

600

01/59/22189.27 01/11/19329.52 01/60/14146.34 01/18/7780.84 01/55/19014.86 01/16/13667.92
02/54/20373.21 02/11/15462.55 02/56/14723.81 02/18/7748.42 02/55/16816.09 02/14/11591.25

03/54/17988.65 03/11/11915.86 03/56/14098.96 03/18/7436.36 03/55/15902.07 03/11/10671.06

04/54/16567.28 04/11/8525.42 04/56/13845.64 04/18/7210.07 04/55/15376.27 04/11/7632.79

05/54/21580.31 05/11/15786.15 05/60/14114.68 05/18/7618.26 05/55/17899.56 05/13/12982.88

06/54/19094.62 06/11/13305.31 06/60/14119.19 06/18/7512.39 06/55/17798.51 06/12/12486.91

07/54/17553.19 07/11/10868.46 07/60/14097.52 07/18/7667.39 07/55/17188.86 07/11/12098.58

08/54/16324.95 08/11/8075.55 08/58/14751.28 08/18/7464.88 08/55/16777.26 08/11/10935.97

09/54/20212.92 09/11/14193.30 09/56/13977.47 09/18/7568.16 09/55/16724.39 09/11/10346.11
10/54/18927.37 10/11/13086.16 10/56/13784.09 10/18/7280.48 10/55/16444.31 10/11/9709.96

800

01/80/38540.40 01/15/29778.16 01/80/25299.79 01/24/11917.28 01/73/32953.99 01/21/21680.78
02/72/34358.80 02/15/23942.59 02/76/25734.81 02/24/11698.36 02/73/29625.85 02/18/18915.90

03/72/30711.02 03/15/18792.94 03/73/25041.87 03/25/11872.82 03/73/28477.15 03/15/15884.89

04/72/29089.37 04/15/14029.92 04/72/24219.23 04/24/11604.61 04/73/27584.57 04/15/12362.60

05/72/36362.38 05/15/25962.56 05/80/25265.89 05/24/11561.18 05/73/31035.67 05/18/19622.48

06/72/32412.67 06/15/21660.17 06/80/25293.71 06/24/11539.97 06/73/30896.72 06/16/20034.93

07/72/30041.23 07/15/17563.25 07/80/25234.76 07/25/11736.21 07/73/30492.24 07/15/18622.57

08/72/28793.35 08/15/13887.83 08/76/25737.39 08/24/11497.50 08/73/29849.56 08/15/17367.36

09/72/34527.50 09/15/23905.50 09/73/25216.66 09/24/11688.26 09/73/29756.55 09/15/16739.85
10/72/32643.85 10/15/22178.56 10/73/24664.68 10/24/11373.05 10/73/29387.23 10/15/15635.17

1000

01/100/55998.03 01/19/45198.44 01/100/42676.12 01/30/17030.37 01/90/50673.09 01/23/31768.89

02/92/50633.40 02/19/36588.92 02/95/42509.69 02/31/17055.34 02/90/46394.54 02/21/26956.04
03/91/47466.88 03/19/27162.51 03/91/41564.72 03/31/17245.16 03/90/44149.27 03/18/22239.43

04/91/44743.90 04/19/19551.15 04/90/40475.11 04/30/17610.28 04/90/43074.82 04/18/17039.80

05/92/53338.29 05/19/39251.86 05/100/42514.23 05/31/16904.93 05/90/48853.78 05/20/29306.77

06/91/50438.84 06/19/32340.63 06/100/43038.82 06/30/16843.64 06/90/48325.30 06/18/29499.02

07/91/46680.31 07/19/25928.47 07/100/42529.55 07/32/17216.83 07/90/47444.73 07/18/27533.09

08/91/44392.65 08/19/19561.45 08/98/42451.59 08/30/16454.37 08/90/46351.53 08/18/26122.10

09/91/55275.32 09/19/36028.83 09/93/41948.19 09/31/17515.85 09/90/46325.38 09/18/25193.30

10/91/51288.75 10/19/32970.00 10/91/41159.70 10/30/16482.02 10/90/45776.74 10/18 /24282.80
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